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1. INTRODUCTION

To study the effectiveness of various control system design methodologies. the NASA Langley Research
Center initiated the Benchmark Active Controls Project. In this project, the various methodologies will be
applied to design a flutter suppression systems for the Benchmark Active Controls Technology (BACT)Wing
(also called the PAPA wing). Eventually, the designs will be implemented in hardware and tested on the BACT
wing in a wind tunnel..

This report describes a project at the University of Washington to design a multirate flutter suppression
system for the BACT wing. The objective of the project was two fold. First, to develop a methodology for
designing robust multirate compensators, and second, to demonstrate the methodology by applying it to the
design of a muitirate flutter suppression system for the BACT wing.

The contributions of this project are

1) Development of an algorithm for synthesizing robust low order mr:itirate control laws. The algorithm

is capable of synthesizing a single compensator which stabilizes both the nominal plant and multiple
plant perturbations.

2)  Development of a multirate design methodology, and supporting software. for modeling, analyzing
and synthesizing multirate compensators.

3)  Design of a multirate flutter suppression system for NASA’s BACT wing which satisfies the specified
design criteria

This report describes each of these contributions in detail. Section 2.0 discusses our design methodology.
Section 3.0 details the results of our multirate flutter suppression system design for the BACT wing. Finally,
Section 4.0 presents our conclusions and suggestions for future research.

The body of the report focuses primarily on the resulis The associated theoretical background appears in

the three technical papers that are included as Attachments 1-3. Attachment 4 is a user’s manual for the
software that is key to our design methodology.
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2. AMETHODOLOGY FOR DESIGNING
MULTIRATE COMPENSATORS

2.1. OVERVIEW

Our design methodology defines the general approach a designer would take, and provides the specific
tools needed. to solve a muitirate control problem. The general approach dictated by the methodology is to
model a multirate system as an equivalent single-rate system, to synthesize the compensator using parameter
optimization. and to analyze the resulting closed-loop system by applying modified single-rate techniques to a
singie-rate equivalent model of the muitirate system. A schematic of our multirate design methodology is
shown n Fig. 2.1. In the tollowing paragraphs we first introduce the terminology and notation unique to

mulurate systems and then discuss each aspect of the design methodology along with the applicable design and
analysis tools.

2.2, DEFINITIONS, ASSUMPTIONS AND NOTATION

A multirate sampled-data system consists of a continuous plant in feedback with a multirate compensator.
A block diagram of such a system 1s shown in Fig. 2.2 where the signals v; and . are continuous output
vectors. u 1s the conttnuous control input vector. w is the conunuous process noise, and v 1s the discrete sensor
noise. The pnmary components of the muitirate system are the continuous plant. the sampling hardware (e.g.
A/D converters), a digital processor (e.g., a computer), and the signal holding hardware (e.g., zero-order-hold
D/A converters). The samplers. digital processor and holds wiil be referred to together as the “multirate
compensator”. We will assume that the plant is linear time-invariant, and that the multirate compensator
conforms to the Generalized Multirate Control Law Structure discussed in Section 2.3.1.
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Figure 2.1. A mulurate design methodology. Section numbers indicated 1n parentheses
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Figure 2.2. Multirate sampled-data system

As we will later see, multirate systems which satisfy our assumptions are periodically time-varying. To
emphasize their peniodic nature we will use a double index notation for the independent variable of a sampled or
discrete signal. For example. given a continuous signal Vi), vm.n) represents W t) sampled at the time
t=(mN +n)T, where the integer N is the period of repeution: T is the sampling period; m =0, i. ... ; and
n=0. 1... N-1.

The design methodology presented in the following sections provides tools to model the closed loop system

1n Fig. 2.2, to compute optimum values of A;. B;, C; and D., and to analyze the performance of the closed-loop
system.

2.3. MODELING A MULTIRATE SYSTEM

Two useful modeling tools are the Generalized Multirate Control Law Structure (GMCLS) and the
Equivalent Time-Invariant System (ETIS).

23.1. TheGMCLS

The GMCLS is a control law structure which describes a multirate compensator of arbitrary dynamic
order. with an independent sampling rate for every compensator input. and independent update rates for every
processor state and compensator output. A multirate compensator with the GMCLS is shown i Fig. 2.2, In
this figure each element of the continuous plant output v is sampled at an independent rate. The sampled value
of v¢, ¥, is combined with the current processor state vector, I, using the state space structure shown in the
tigure. Each element of the processor state vector. I, is updated at an independent rate. The continuous output
from the compensator. represented by the vector u. is formed by holding the output from the digital processor.
i, with a zero-order-hold. Each element of the vector & can be held at an independent rate to form u.

Conceptually. one can divide the multirate compensator into two parts, the “sampling schedule” and the
digital processor gains. This is the approach used in the GMCLS. The “sampling schedule™ is a description of
when each compensator input 1s sampled and when each compensator output and processor state is updated.
while the digital processor gains determine the dynamics of the digital processor.
2.3.1.1.  Sampling Schedule for a GMCLS

In general. the sampling and updating of the elements of ¥s. . and & in Fig. 2.2 can occur at any ume.
However. to contorm to the GMCLS, we require that these sample and update acuvities occur only at integer
multiples of some fixed time, called the shortest rime period (STP). The actual value of the STP is arbitrary, but
1t 1s often a funcuon of the hardware and software used to implement the control law. We also require that the
sampling and updating activities of the sensors. states and outputs repeat themselves after some tixed penod of
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Figure 2.4 Apenodic Sampling Schedule

ume. (This requirement disallows, for example. a system whose sampling period is a function of the time
require to execute the control software which mighit vary with control inputs values.) The period of repetition of
the sampling schedule is called the basic time period (BTP). Finally, we define

the integer N'= ST and the value = STP @1
In our double index notation, the first index (m) in, for example, y(m.n) indicates the integer number of BTP's
which have elapsed when the sample/update occurred and the second index (n) indicates the integer number of
STP’s which have elapsed within the current BTP when the sample/update occurred.

We can represent the sampling schedule for the multirate compensator graphicaily, as shown in Fig. 2.3.
The figure shows a time line for each sampler. processor state, and zero-order-hold. The ume line is divided
into one STP increments. On the left side of the ime line is a descnption of the signal or state being sampled or
updated. On the right side is a description of the particular activity represented by the time line, e.g., state
update. sampler, or zero-order-hold. Circles on each ume line indicaie when a sample or update activity
associated with that particular signal or state takes place. Usually the sampling schedule 1s shown for only one
BTP since the sampling schedule repeats itself every BTP.

In most applications, the sampling/updating acuvities for a given sensor. output or state will be periodic
within the BTP. as 1s shown 1n Fig. 2.3. However. the sampling/updating activities do not have to be peniodic
within the BTP. The only requirement 1s that the sampling/updating activities have some period of repetition
(the BTP) and that they occur at integer multiples of the STP. Once the STP and BTP have been selected. the
designer can arbitrarly specify sampling/updating acuvities at any multiple of the STP within one BTP. An
example of a multirate sampling schedule 1n which the sampling/updating acuvities are not penodic within the
BTP is shown in Fig. 2.4. A sampling policy like this might be used to multiplex multiple inputs through a
single analog to digital converter.

2.3.1.2. Digital Processor Gains

The processor gains are the values ot the matrices A,. B;. C,. and D, it Fig. 2.2. Like the sampling
schedule. they can be penodically time-varying with a ;eriou of repeution ot one BTP. Generally. these
matrices are tree design parameters which can be adjusied by the designer to improve the performance of the

multirate compensator. The synthesis aigorithm discussed in Section 2.4 c#n be used to calculate optimum
values tor these gains.




2.3.1.3.  State Space Formulation of the GMCLS

A compensator with the GMCLS can be modeled as a periodically time-varying discrete-time system. The
state space form of the GMCLS is given by

Am.n+l) = Ag(n)z(m,n) + Bg(n)¥(m.n) (2.2a)
utmn)= Co(mzimm + Dg(m)z(mn) (2.2b)

where
Amn) = [Zmm' Fma)' dmant|T (2.3)

and &(m.n) is used to model the sample and hold activity from u(m.n)to u(m.n). The form of Ag.Be.Cy and D,
is given in [Berg, Mason & Yang 1991} and [Mason & Berg 1992] which are included as Attachments | and 2.

We should emphasize that Eqn. (2.2) is used to model the complete sampling/updating activities and
dynamics of a multirate compensator. It would not be used in the actual implementation of the compensator.
When implemented. the sample and hold activities of the inputs and outputs would be performed by appropnate
hardware. The only dynamics to be calculated are those associated with the processor state vector 7.
2.3.14.  Factored Form of the GMCLS

Equation (2.2) is a convenient form to model the general multirate compensator. The difficulty with
Egn. (2.2) is that it ties up the digital processor matrices, A(n), B.(n). C-(n), and D-(n), in the model matrices
Ag(n), Bg(n), Cyo(n), and De(n). The matrices A .(n), B.(n), C.(n), and D (n). which describe the dynamics of
the digital processor, are the unknown design parameters which we wili later optimize. We can separate the
processor dynamics matrices from the model matrices as follows.

Define the composite compensator matrix:

Dg(") Cg(”)
P(n) = 2.9)

and factor P(i1) as follows

P(m)= Sy (n)P(n) 53(n) + S3(n) (2.5)
D-(n) C.(n)

where P.(n)= (2.6)
B.(n) A;(m)

and 1,57 and $3 are the switching matrices defined by the sampling schedule for the compensator. Their
exact form is given in (Mason 1992] and [Mason & Berg 1992] (see Attachment 1),

Itis important to note the difference between P(n) and P.(n)in Eqn. (2.5). P(n)is a peniodically time-
varying matrix defined by Eqn. (2.4). It includes all the information about the processor gains and the
sampling/update schedule. P.(n) contains only the gains for the processor dynamics and is indepcndem of the
sampling schedule.
2.3.1.5.  Implementation

The Generalized Multirate Control Law Structure (GMCLS) provides a tframework for dealing with
multiple sample/update rates, time delays, and periodically time-var ‘ing gains in a digital control system. It
gives the designer freedom to either s¢! <t the “sampling schedule” that best solves the proviem, or if necessary,

to use the “sampling schedule™ dictate. “isting hardware and software. with out i ing to worry about the
bookkeeping involved with multiple rates . 1 time delays.



Ir practice. the GMCLS is implemented in software and is rarely used directly by the designer. The
designer need only supply the sampling schedule and values for the digital processor gains to provide a
complete compensator description. This description can then be transformed directly into a single-rate
peniodically time-varying system using the GMCLS.

The GMCLS is used extensively by the synthesis algorithm described in Section 2.4, and by the modeling
and analysis software referred to in Section 2.5. Documentation for this software is provided in Attachment 4

2.32. The Equivalent Time-Invariant System (ETIS)

A multirate compensator with the periodicaily time-varying structure discussed in Section 2.3.1.3 can be
further transformed into a single-rate Equivalent Time-Invariant System (ETIS) with the form shown below

HAm+1.0) = Ap X(m,0) + Bgug(m.0) (2.7a)
YEm0) = Cpxtm0) + Dgug(m0) (2.7b)
where
Vs(m.0) u(m 0)
vgmor=| " nd wgm o= um-h (2.8)
_\',(m‘.N-I \.J u(m;N~l)

We use the subscript E to denote vectors and niatrices strictly associated with the ETIS. See [Meyer & Burrus
1975] or {Mason 1992] for a definition of Ag, Bg. Cf and DE.

A key feature of an ETIS is that a multirate, or periodically time-varying system wili be staole if and only if
its ETIS is stable {[Kono 1971).  Also notice that the ETIS input/output vectors are composite vectors
containing the input/output values of the multirate (or periodically-time varying) system at N' sampling times.
Consequently, an ETIS is always MIMO even if the original system is SISO. If the multirate system has p
inputs, g outputs and a sampling period of one STP then the ETIS is a single-rate linear time-invariant system
with N p inputs, N q outputs and a sampling penod of one BTP.

2.32.1.  Implementation

The ETIS is fundamentai to the analysis of multirate systems. It allows one to evaluate the performance
and stability of complex systems comprised of multirate, periodically time-varying and/or single-rate
components using only technigres developed for linear ime-invariant single-rate systems. For example, to
evaluate the stability of the system in Fig. 2.2. we would first transform the multirate compensator into its ETIS
with a given value for N. Then we would discretize the plant at the STP of the compensator using a zero-order-
hold and transform the resulting single-rate system into an ETIS using the BTP of the compensator. Next, the
plant and compensator ETIS's could be combined in feedback just as if they were traditional single-rate
systems. Finally, we could determine the stability of the original multirate sampled-data system from the
cigenvalues of its closed-loop ETIS.

Documentation for software capable of transforming multirate and single-rate systems into their ETIS s is
provided in Attachment 4.

24. SYNTHESIZING A MULTIRATE COMPENSATOR

When designing a multirate compensator for the system in Fig. 2.2 there are three components one must
consider: the compensator structure (this includes the dynamical order of the digital processor). the sampling
schedule. and the values for the digital processor gains. In our design methodology the compensator structure
and sampling schedule are selected by the designer based on the open-loop plant dynamics, the bardware
constraints, if any. and the desired closed-loop performance. Values for the digital processor gains are




calculated by our synthesis algorithm so as to provide optimum closed-loop performance for the chosen
compensator structure and sampling schedule. In the following paragraphs we discuss compensator structure
and sampling schedule selection, and provide a brief description cf our synthesis algorithm. A complete

discussion of the algorithm is provided in Attachment 4 and in [Mason & Berg 1992] (also included as
Attachment |).

24.1. Compensztor Structure and Sampling Schedule Selection

The choice of compensator structure and sampling schedule is problem dependent. It depends on the
hardware constraints, the open-loop plant dynamics. and the design objectives. Two often used multirate
compensator structures are worthy of mention, however. They are successive loop closure and coupled
succeszive loop closures. (Also see {Berg 1986 for a discussion of successive loop closures. )

24.1.1.  Successive Loop Closures Structure

The simplest multirate compensator structure is successive loop closures (SLC). This structure ~.onsists of
multiple decoupled single-rate control loops. each loop operating at a unique sample/update rate. The state
space representation of a SLC structure with two loops is

(.\'fas,(mi-l)‘_ _|4fas 0 1] X fast{m) . bass 0 ,\‘fa_ﬁ(mP]> (2.9a)
Lstowtn + 1)) 0 dyow J Xslow (1) 0 bsiow | ¥stowtn)]
{“fast(m”}=["fasr 0 J{xfasr(”‘)‘. +|:dfasl 0 J{)'fast('")} (2.9b)
Uslow (1)) 0 Cstow J{ *stow(m) 0 dsjow |{ ¥stow(n)

where v represents the sampled input from the sensor and u is the output to the zero-order-hold. The subscripts
fast and slow denote inputs, outputs and states which are sampled/updated at a fast or slow rate, respectively.

SLC is best applied to control problems wheie the closed-loop dynamics are comprised of some fast and
some slow dynamics with the bandwidths of the two separated by at least a factor of four. In this type of
problem, the “fast” loop(s) of the SLC compensator, operating at a fast sampling/update rate. would be used to
control the high bandwidth dynamics, while the “slow” loop(s), operating at a slower sampling/update rate,
would be used to control the low bandwidth dynamics. Problems such as these usually fall into one of two
categories.

In the first, the open-loop system exhibits both fast and slow dynamics. The multirate compensator is used
to improve the performance of this system without drastically changing the fast or siow bandwidths. An
example of this type of problem is n aircraft yaw damper/modal suppression system. The aircraft is open-loop
stable and has some fast dynamics associated witii the flexibility of the airframe and some slower dynamics
associated with the yawing motion of the entire aircraft. A multirate compensator for such a system might
consist of a high bandwidth loop to damp the airframe vibrations and a low bandwidth loop to improve yaw
damping.

In the second type, the open-loop dynamics of the plant are arbitrary. but in feedback with the compensator
the closed-loop system exhibits the characteristic fast and slow dynamics. These systems usually have a
decouplied structure where sets of open-loop modes are strongly controllable and observable with a particular set
of inputs and outputs and weakly cont-ollable and observabl: with the remaining inputs and outputs. An
example of thi. type of system is the two link robot arm (TLA) used in (Berg, Amit & Powcll 1988}, and in
(Yang 1988]. All four of the open-loop poles of the TLA are at the origin of the s plane. The plant has two
inputs and two outputs. Only two of the modes can be controlled with any one input. Similarly, only two of
these modes can be observed with any one output. In the multirate design. one input/output pair is used to place
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two of the closed-loop poles at a high frequency and the other input/output pair is used to place the other two
closed-loop poles at a low frequency.

Sample rate selection for the individual control loops of a SLC design follows the same guide lines used in
single-rate sample rate compensator design: the sample rate for each SLC loop should be 5 to 20 times faster

than the closed-loop bandwidth desired for that loop. See [Franklin Powell & Workman 1990] for a discussion
of sample rate selection for single-rate systems.

2.4.1.2.  Coupled Successive Loop Closures Structure

The coupled SLC structure is the same as the traditional SLC structure except the designer can include
cross feed terms which couple the fast and slow inputs and outputs of the design. In the state space formulation,
cross coupling is represented by non-zero off diagonal terms in the compensator gain matrices. An example of

a compensator structure with cro. . feed from the slow sampled sensor to the fast sampled/updated control loop
is given in Eqn. (2.10).

{xfasr('""'l)\ =[afast 0 ]{Xfasl('")}+[hfast by ]{."fasr(m)} (2.10a)
Xslow(n+1) } 0 dgon J XslowlN) 0 bsiow | ¥siow(n)
{“fan('")] ={"'fas! 0 ]{xfa_"(m)] +I'dfas, df J{.\'fas,un)] (2.100)
Usiow(N) 0 Cstow f *stow(m) JL O o | Vstow() I

This structure is best applied to systems which have coupling between their fast and slow closed-loop dynamics.
See [Yang 1988] for a discussion of cross feed in the TLA problem.

24.2. Optimizing the Digital Processor Gains

Having chosen an appropriate compensator structure and sampling schedule. the designer can use our
synthesi< algorithm to calculate optimum values for the digital processor gains A:. B,. C. and D. such that the
closed-lc .. system in Fig. 2.2 minimizes a quadratic cost function.

The primary design parameter for the synthesis algorithm is the quadratic cost function. By selecting an
appropriate cost function, the designer can influence the performance of the resulting closed-loop system. The
cost function minimized by our synthesis algorithm has the forr.:

- { & Mo
=1 T T Ye
J_’lmls{l‘[_\c (1) (_:)][Mr 0| ll(l)]} (2.11)

where J is the cost associated with the closed-loop system shown 1n Fig. 2.2. The vector v, is the continuous
criterion output and u is the continuous control input. @1, @ and M are the cost function weighting matrices
and are free design parameters.

The cost function in Eqn. (2.11) has the same form in a continuous time LQR design. Thus the cost
associated with the optimized multirate compensator and that of an LQR design can be compared directly. The
designer can also use this fact to help select appropriate values for Q, 2 and M.

To improve the robustness of the compensator, the synthesis algorithm can optimize the digital processor
gains for muitiple plant conditions simultaneously. The resulting compensator will stabilize the each plant
condition and provide overall optimum performance. This is accomplished by minimizing the new cost
function of Eqn. (2.12) which is the sum of the costs associated with each plant condition.

Ne_ VW f My,
J=37=3 IimEi Yo u,T(t)][Ig'r 'J[""( ’]} (2.12)
i

r= Tt R, u,(r)
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Here J; is the cost associated with the i# plant perturbation and there are Np plant perturbations .
Optimum values of A., B.,C..and D,, occur when

9 =0, oJ = (), 9/ =0, and 9/ =0 orequivalently when -(i=0 (2.13)
oA, OB, ac, D, q oP,

Our algorithm use a gradient type numerical search and a closed form expression for the gradients in
Eqn. (2.13) to determine values of the digital processor gains such that the conditions in Eqn. (2.13) are
satisfied. Refer to (Mason & Berg 1992] in Attachment 1 for a closed form expression for the gradients in
Eqn. 2.13. The synthesis software uses an iterative process to determine optimum values for the digital
processor gains and the user must provide the software with an initial guess for A, B, C;. and D-. The inidal
guess must stabilize every plant condition considered in Eqn. (2.12).

24.3. Implementation
In practice. the steps for designing a compensator with our methodology are

1) Construct a continuous LQ reguiator for each piant condition which achieves the desired performance
for that condition.

2) Based on the desired closed-loop dynamics and the constraints imposed by the system hardware,
choose an appropriate compensator structure and sampling schedule.

3)  Using the chosen sampling schedule and compensator structure, design a compensator which
stabilizes all plant perturbations. When the desired compensator structure 1s one of the two structures
discussed in the previous section, the designer can use successive loop closures to find a stabilizing
value for the digital processor gains. In successive loop closures, the plant is stabilized by closing one
loop at a time, from one set of inputs to one set of outputs. To obtain a muitirate compensator, each
loop is closed using a different sampling/update rate. When. due either to a complex sampling
schedule. or the complexities of the control problem, successive loop closures cannot be used to find a
stabilizing value for the digitai processor gains. use Yang’s algorithm (see [Yang 1988]). This may
seem counterproductive at first, since one of the reasons for developing our algorithm was the
computational inefficiencies of Yang’s algorithm. However, our experience has shown that. in
general, Yang's algorithm converges 1o a stabilizing compensator fairly rapidly. Itis the computation
time associated with optimization of this stabilizing solution that tends to be excessive.

4)  Calculate optimum values for the digital processor gains using the synthesis algorithm of
Section 2.4.2. The cost function weighting matrices for the optimization are the same as those used to
design the LQ regulators in Step I. The starting point for the optimization is the stabilizing
compensator designed in Step 3.

See Attachment 4 for the complete documentation of the software that implements the synthesis algorithm.

2.5. ANALYZING A MULTIRATE S YSTEM

Multirate system analysis is difficult because the periodic nature of a multirate svstem implies that a
traditional transfer function does not exist. Thus. common analysis tools such as frequency response or Nyquist
diagrams are not directly applicable to multirate systems. Our solution is to transform the multirate system into
a linear time-invariant single-rate system, the ETIS. and then apply established single-rate analysis techniques
using the Z-Transiorm of the ETIS. (Note: we write the Z-Transform of an ETIS where N=BTP/STP as

GE (zN).) The following paragraphs discuss five useful tools for analyzing the performance and stability of a
multirate system based on its ETIS.
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25.1. Gain and Phase Margins

In Section 2.3.2 we noted that a multirate system will be stable if and only if its ETIS is stable. Therefore,
we can determine whether the muitirate system is stable by applying the Nyquist criterion to its ETIS. Since all
but tnvial ETIS's are MIMO, we must use the muttloop Nyquist stability criterion. The multivariable Nyquist
1s a plot of the eigenvalues of the ETIS loop transfer function as the discrete variable z traverses the unit circle
[MacFarlane 1970] {Maciejowske 199C*

When the multirate system is SISO we can obtain traditional gain and phase margins from the muitiloop

Nyquist plot. Let Gg(zV) be the ETIS loop transfer function and let A be some constant gain and phase
uncertainty at the plant input. If

AlZ)= ke"e where keie is a scalar (2.19)

then Ag(zY) = 1k &© (2.15)

where /is and N x N identity matrix
Now the new loop transfer function with the gain and phase uncertainty of Eqn. (2.15) can be written as
Hg (zN)kmp = Gg (z‘v) k JB (2.16)

The multiloop Nyquist plot of Hg (z‘V)loop 15 just the muitiloop Nyquist plot of Gg (z‘v) scaled by the gain & and
rotated by the phase shitt @ - the same as in traditional SISO Nyquist plots. Gain and phase margins for the
multirate system can therefore be obtained from the multiloop Nyquist plot of Gg (zN) by determining the
values of k and @ which destabilize the ETIS. (See [Thompson 1986] for an alternate derivauon using Kranc
operators.)

When the multirate system is MIMO. the gain and phase margins calculated by this procedure apply
stmultaneously to all inputs and outputs, and are consequently not realistic measures of robustness. To obtain

realistic measures of robustness for a MIMO mulurate system. a norm based approach such as singular value
analysis is required.

2.5.2. Singular Values

Singular values are useful] for measuring the robustness of MIMO multirate ,stems. The key step in
multirate singular value analysis is transtorming the multirate system in Fig. 2.5 into an ETIS sysiem which has
the output teedback torm shown in Fig. 2.6. Since the multirate system will be stable if and only if its ETIS is
stable. the closed-loop system 1n Fig. 2.5 will be stable for a given value of A provided the closed-loop system
in Fig. 2.6 1s stable tor a corresponding value of Ag. Thus we can use single-rate teciniques to evaluate the
robustness of the ETIS system and relate those results directly to the associated multirate system.

A acaa T S TTETEIIETIONEE. = T e . I S "w'T
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2.5.2.1. Unstructured Singular Value Analysis

A bound on the smallest value of G(Ag) for which AE destabilizes the system shown in Fig. 2.6 can be
calculated using unstructured singular value analysis. This system will be stable for all AFE such that

S(AE V) < — forall z on the unit circle 2.17)

o(GE@M)

(see {Maciejowski 1989]). This result, however, is only a measure of the size of the smallest destabilizing Af
and is generally not a measure of the size of the smallest destabilizing uncertainty A. Because the input/output
vectors of an ETIS are composite vectors, containing the input/output values of the multirate system at N sample
times, Ag can be a complex function of the values of A at N sample times. (The relation between Afg and A is
given by Eqn. 2.7.) The size of the smallest destabilizing A g found using unstructured singular value analysis is
only a conservative estimate of the size of the smailest destabilizing A. This estimate accounts for not only the
fictitious perturbations normally associated with unstructured singular values, but also for time-varying and
non-causal perturbations.
Consider the simple case where A is a constant. From Fig. 2.5 we have that

w=Av (2.18)
For an ETIS with N=2
,0 A A (m,0)
WE=AE VE or W(m ) = 1" 12 \’(m (219)
w(m.l) AZI A32 v(im,1)

A destabilizing A g determired by singular value analysis might, for example, include block diagonal elements
in Ag which are unequal. e.g. Ay} # Az>. This corresponds to a time-varying perturbation because the gain
between w' and v varies with time. Another such Ag could include non-zero upper block diagonal elements in
Ag.e.g. A12 # 0. This corresponds to a non-causal perturbation because a future input. v(m,1), can affect the
current output w(m,0).

We can eliminate this conservativeness by restricting the allowable perturbations in Ag. This leads directly
to structured singular value analysis.
2.5.2.2. Struciured Singular Value Analvsis

In order for the ETIS ui.certainty Ag > represent the actual uncertainty A, its structure must obey
Eqn. (2.7). Finding the size of the smallest destabilizing A subject to Egn. (2.7) requires the solution of a
sirictured singular value problem. For the system in Fig. 2.6 we define the structured singular value, u, as

0if det(/ - Gp(z™1ag(zV )= 0 forall a e agp

~ LN -1
HUE(Z" )= _ ) (2.20)
E min [G(A(2))] such that det(/ - GE(zN)AE(zN N=0]| otherwise
AEABD

where A is the form of the permissible block diagonal perturbations & and the structure of Ag must satisfy
Eqn. (2.7). The size of the smallest destabilizing perturbation G(Apin) satisfies

N N o_ 0
————=supU(Gg(:")) where:" =¢’ (2.21)
O(Anin) pHZE

For a discussion of i and Agp sce (Doyle 1982].
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Unfortunatelyv, even a simply structured dynamic uncertainty A(z) transforms to an ETIS uncertainty,
A M), with a complex structure. For example. if N=2 then the ETIS of Al2)is

(2.22)

ol A@+acy A - A=z
Ap(z5)=
HA(Z) - A(~2)) A(Z)+ A(-2)

In order to find the value of O(Amin) using Eqn. (2.21), one must solve Eqn. (2.20) with Ag constrained 10 have
the structure in Eqn. (2.7). Currently there is no general technique for solving this problem. When, however,
the uncenainty, A, is a constant, as is the case for many problems, the ETIS uncertainty, Ag, is also a constant
with a repeated block diagonal form.,

Ap =diag(A. A, ..., A) with N blocks. (2.23)

There are several good methods for estimating G(Amin) when A £ has this block diagonal structure. One simple
method for estimating i when A is strictly diagonal is derived in [Safonov 1982]. Itis

H(Gy(zY)) < inf(5(abs(DGy (") D™)) = A,(Gy (")) (2.24)

where abs(A) 1s a matrix such that [abs(A)],j =1Ajjl; Ajj is the ij™" element of A; and Ay, is the Perron-Frobenius
eigenvalue.
2.5.4.3 Implementation

The procedure for performing singular value analysis via the ETIS is as follows

1) Transform the problem into the form shown in Fig. 2.5

2)  Discretize the plant at the STP of the compensator and compute the ETIS of the plant using the N of
the compensator

3)  Combine the ETIS of the plant and compensator to obtain the closed-loop system shown 1n Fig. 2.6

4) Use any applicable single-rate singular-value based analysis tool to compute the size of the smallest
destabilizing uncertainty Ag.

5)  Interpret the results in the light of the fact that the computed results are for an ETIS uncertainty Ag
whereas the actyal plant uncenainty is A. Af is a tunction of A as given by Eqn. 2.7 and so the results
might be conservatve unless structured singular vatue analysis is used.

253. Maximum RMS Gain

The maximum RMS gain of a SISO single-rate system is the maximum gain on that system’s Bode plot.
As already noted. a traditional Bode piot cannot be generated for a multirate system. However, the maximum
RMS gain of a SISO multirate system can be computed: it is the H ., norm of the ETIS transfer function. This
value. shown in Eqn. (2.25). plays the same role as the maxtmum Bode plot gain of a single-rate system.

sup RMS(y(m.n)) _ S RMS(vg(m.0))

= su = IGg(zVy,, (2.25)
RMS()#0 RMS(u(m, n)) RMS(ug 120 RMS(ug(m,()) E(

Actually, Eqn. (2.25) can be used 1o calculate the RMS gain of SISO or MIMO systems. It simply states that
the maximum RMS gain of a transfer function G is equivalent 1o the H,, norm of GEg. See also the related
work of (Sivashankar & Khargonekar 1991 .

Unlike linear ume invariant single-rate systems. the discrete input signal resulting in the maximum
multirate RMS gain does not necessarily have the simple form sin(w T'm). Instead it is comprised of the sum of



sinusoids of several distinct frequencies. Details on computing the signal of maximum RMS gain for a
multirate system are given in [Mason & Berg 1992} (Attachment 1).

2.5.3.1 Implementation

One simple method for determining the Ho, norm is to plot the maximum singular value of GEasz?
traverses the unit circle. Ho(GE) is then the peak value on that plot.

It is important to remember that Eqn. (2.25) is a measure of the discrete RMS gain between the discrete
inputs and outputs of interest. Often the designer is interested in calculating the maximum RMS gain between a
continuous input and output of a sampled-data system. A good estimate of the RMS gain in this case can be
found by sampling the continuous input and output of interest at a fast rate. The result is a multirate system -
the input and output of interest are sampled/updated at a fast rate while the other inputs and outputs are sampled
at the rate appropriate for connection to the multirate compensator. (This is also useful for determining the

inter-sample behavior of a sampled-data system.) The maximum RMS gain can then be calculated using the
ETIS of this new system. '

2.54. Steady-State Covariance
A common measure of performance is the steady-state covariance of select outputs in response to a
disturbance input. In a multirate system the “steady-state” covariance values are periodically time-varying.

Fortunately, the periodic “'steady-state” covariance values at each sample/update time are straightforward to
calculate using the ETIS.

It is easy to show that

E{y(m,0)y(m,0)T)
, T
Elveyk) = E(y(M.I):,\(m.O)}

E{y(m,N - l))‘(m.O)T}

E(ym,0Oy(m T}y o E{v(m,0)y(m.N -1}
E{y(m, y(m,1)]) E{y(m. )y(m.N -1)]) 2.26)
E{¥(m.N-Dy(m D} - E{v(m.N-Dy(m.N-1)T}

The diagonal block elements of Eqn. (2.26) contain the steady-state covariance values at each sample/update
time of the corresponding multirate system. Therefore. the steady-state covariance values can be found by
calculating the ETIS of the multirate system and computing the steady-state covariance values of the ETIS using
the discrete Lyapunov equation. Refer to (Kv/akernaak & Sivan 1972]. Algorithms for calculating discrete
covariance values are widely availabie (¢.g., in Matlab and in Matrixy ).

255. Time Domain Simulations

Time domain simulations are straightforward to compute using the ETIS and Eqn. (2.7). As noted in
Section 2.5.3. inter-sample behavior can be obtained by sampling the continuous inputs and outputs at an
arbitrarily fast ratc. Documentation for the M-File mrsim, which generates a time domain stmulation of a
multirate sampled-data system using the ETIS is provided in Attachment 4.

2.6. SUMMARY

The tools presented in this section form the foundation of our multirate design methodology, and provide a
unified approach to multirate modeling, synthesis and analysis. Using these tools one can model a complex
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3. APPLICATION OF THE MULTIRATE DESIGN METHODOLOGY TO THE
DESIGN OF A FLUTTER SUPPRESSION SYSTEM FOR THE BACT WING

3.1. INTRODUCTION

To demonstrate some of the advantages of multirate control and the capabilities of our design methodology,
we designed several flutter suppression systems for NASA’s BACT wing using the methodology in Section 2.
A summary of our designs is presented in the following paragraphs. In Section 3.2 we describe the model wing
and its open-loop characteristics. In Section 3.3 we discuss our design goals and constraints. In Section 3.4 we
discuss our design approach and the details of the design process. In Section 3.5 we present our flutter
suppression system design resuits. Finally, we end the chapter vith some concluding remarks in Section 3.6.

3.2 THE MODEL WING AND ITS OPEN-L OOP DYNAMICS

3.2.1.  Model Wing Description

The BACT wing was developed by NASA Langley for the Benchmark Models Program. It consists of a
rigid airfoil mounted on a flexible base. The base. called the Pitch and Plunge Apparatus (PAPA), provides the
two degrees of freedom needed to model classical wing flutter. Our designs used the single control surface (CS)
located on the trailing edge of the airfoil and two accelerometers, one near the trailing edge (TE) of the airfoil
and one near the leading edge (LE). A diagram of the BACT wing is shown in Fig. 3.1. A detailed description
of the BACT wing can be found in (Durham, Keller, Bennett & Wieseman 1991} and [Bennett, Eckstrom,
Rivera, Dansberry, Farmer & Durham 1991 ].

The flutter suppression system was designed using a 16" order linear statz model of the BACT wing
developed by NASA Langley’s Structural Dynamics Division. This model consists of 4 rigid body states
corresponding to the pitch and plunge modes, 6 unsteady aerodynamic states. a second order actuator model, a
second order Dryden filter, and two first order anti-aliasing filters. A block diagram of the mathematical model
is shown in Fig. 3.2 on the following page.

We were provided with 24 different mathematical models of the wing. These models describe the motion
of the wing in freon at 24 different operating points. The operating points include dynamic pressures above and

below the critical flutter pressure at three different mach numbers. See Table 3.1 on the following page for a
summary of the operating points.

Pitch and Plunge Apparatus

NACA 0012 Airfoil

Controt Su-tace (CS)

Leading Ex (LE)

T Edge (TE \4—10'"
Accewromder *)

Figure 3.1. BACT wing



y modes - the pitch and plunge modes. The poles associated with pitch and plunge at mach 0.5 and 75 psf are .
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Figure 3.2. Block diagram of BACT wing

Table 3.1. Operating points for BACT wing. All operating points assume Freon medium

Dynamic Pressure (psf)
(Nominally unstable operating points are in gray)
Mach 0.50 75 100 122 132 150 178 200 225
Mach 0.70 75 100 125 136 146 175 200 225

Mach 0.78 75 100 125 141 151 175 20 225
B S A —

3.22. Open-Loop Dynamics
The response of the open-loop BACT wing model at each operating point is characterized by two dominant

indicated on Figs 3.3-3.4. As the dynamic pressure increases, one pair of these dominant poles moves towards :
the right half plane and eventually crosses the imaginary axis at the flutter stability boundary. Figures 3.5-3.6
show the migration of these dominant modes as dynamic pressure increases. The locations of the open-loop
poles not shown in the figures remain relatively constant.
. The dominant pitch and plunge modes are observable at all operaung points with either the TE or the LE
accelerometer outputs and are controllable ar all operating points using the CS command input. The zeros of the
CS command to TE accelerometer and the CS command to LE accelerometer transfer functions are shown in
Figs. 3.3-34 for an operaung point of mach 0.5 and 75 psf. As dynamuc pressure increases. the non-minimum

- phase zeros associated with the TE acczler~meter migrate into the left half plane. The minimum phase zeros
- that are associated with the LE accelerometer and located near the dominant poles migrate into the right half
- plane. See Figures 3.5-3.6.

! At low dynamic pressures the transfer functions from CS command input to both the TE and LE
z accelerometer outputs are non-minimum phase. Non-minimum phase systems are typically more difficult to
E control than minimum phase systems. An alternatve output is one which measures the difference between the

two accelerometers. This new output is essentially pitch acceleration. The CS cummand to pitch acceleration
transter tunction is minimum phase for all operating points. Figure 3.7 shows the locations of the zeros near the
pitch and plunge modes as dynamic pressure increases. [t turns out that the BACT wing is fairly easy to control
using this new output. The problem is that the putch acceleration output is aruficially created and assumes
perfect measurement of TE and LE accelerations. In reality there 1s some uncertainty in the TE and LE
acceleration measurements that must be accounted for in any design. Therefore we did not use the pitch
X acceleration output directly in our designs. We did. however. use the pitch acceleration output to determine an
' imual stabilizing compensator for the synthesis algonthm. This is discussed further in Section 3.4.3

L b )
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Figure 3.3. Pole/Zero map for open-loop BACT wing at mach 0.50. 75 psf for CS command to TE Accel.
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Figure 3.4. Pole/Zero map for open-loop BACT wing at mach 0.50. 75 pst for CS command to LE Accel.
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Figure 3.5. Migration of open-loop poles and zeros for CS command 1o TE Accel.
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Figure 3.7. Migration of open-loop pole and zeros tor CS command to TE-LE Accel.

3.3, DESIGN GOALS AND CONSTRAINTS

The goal of the design was to synthesize a multirate flutter suppression systemm which stabilizes the BACT
wing at all 24 operating pomts. In addition to stability, NASA Langley specified the following constraints.

Control Activity Constraint: For unity RMS white noise input disturbance : ! jn/sec RMS), the steady-
state covariance of the CS deflection must not exceed 0.0625 deg® (0.25 deg RMS). and the CS
deflection rate must not exceed 65 deg?/sec? (8.0 deg/sec RMS).

Sampling Rate Restrictions: The minimum sampling period is 0.005 seconds. For multirate sampling all
sampling periods must be multiples of 0.005 sec.

Computational Delay: All compensators must be designed with a minimum 0.00$ second computational
delay.
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value of 0.75 for the maximum singular value of a multiplicative uncertainty at the compensator inputs
(see [Mukhopdhyay & Newsom 1984)).
34. FLUTTER S UPPRESSION SYSTEM DESIGN

Wec used the methodology discussed in Section 2 to design the flutter suppression system. The specific
steps for this design were:

1) Select an LQR cost function such that the BACT wing in feedback with the LQ regulator satisfies the
criterion specified by NASA

2) Choose an appropriate multirate compensator structure and sampling schedule based on this LQR
design
3

3)  Find a set of processor gains so that the compensator stabilizes the BACT wing

4)  Synthesize a multirate compensator which minimizes the LQR cost function of step (1) at a few select
operating points using the algorithm discussed in Section 2.4

5)  Check the performance and robustness of the closed-loop system

6) Iterate on items ( 1)-(5) as required
We elaborate on the details of €ach step in the following paragraphs.

34.1. Selecting the Cost Function Weights
The multirate synthesis algorithm firds optimum values of the compensator’s digital processor gains by

points for the optimization we used six

representative ones. The six include the operating points at the extremes
of mach number and dynamic press

ure, and two operating points midway between the extremes. These
operating points are listed in Table 3.2 on the following page. For the fault tolerant design discussed in
Section 3.4.2.4 we included four additional operating points at mach
Table 3.2.

For each operating point we selected a unique set of weights for the synthesis algorithm’s cost function.

The weights were based on a continuous LQR design which weighted the pitch and plunge modes, and the CS
command input of the BACT wing. The cost function has the form

0.50. These operating points are grayed in

7= lim E{x()7Q, x(r)+u(n T, utn} 3.1
t—doo

where x = { x| x2 x3 x4 )T and the Xi are the four states associated with the pitch and plunge mode in a

modalized version of the BACT wing model. States x1 and x3 correspond to the complex conjugate poles which
migrate to the left as dynamic pressure increase .

cause instability in the BACT wing at high dynamic pressures. The variable u is the CS command signal.

For each operating point, the weights, Q| and Q 2, were chosen 50 that the closed-loop damping of the pitch
and plunge modes was greater than 0.07, and the RMS control constraints specified by NASA were satisfied.
For comparison, the damping in the open-loop BACT wing at the stable dynamic pressure of 7§ psf is

o P



approximately 0.025. The weights for each operating point were scaled to obtain a unity LQR cost for a 6
inch/sec RMS white noise disturbance input.

Table 3.2. Cost function weights. Grayed operating points used only for fault tolerant design.

Operating Point State Weight (Q) Control Weight (Q>)
Mach 0.50 7Spsf  diag(1.2x10°2 1.2x10°2 12 12] 610
Mach050  132psf  diag{5.0x10-3 5.0x10-3 3.5 3.5) 500
Mach050  150psf  diag(5.0x10-3 5.0x10-3 2.5 2.5] 750
Mach050  175psf  diag[4.5x10-3 4.5x10-3 1.4 14] 900
Mach0.50  200psf  diag(5.8x10-3 5.8x10-3 0.58 0.58] 1754
Mach0.50  225pst  diag[9.6x10™ 9.6x104 9.6x10°2 9.6x10°2) 4800
Mach0.70  125psf  diag(1.3x10°2 1.3x10-2 6.4 6.4] 3900
Mach0.70  175psf  diag{1.9x103 1.9x10-3 0.56 0.56] 5600
Mach 0.78 75psf  diag[8.8x10°2 8.8x10-2 44 44) 8800

Mach0.78 225 psf __ diagl3.3x104 33x104 1.6x10-2 16x10-2

3.4.2.  Selecting the Compensator Structure and Sample Rate

Traditionally, the design of a multirate compensator structure begins with a successive loop closures
structure and then incorporates cross feed between the loops as necessary. As discussed in Section 2.4.1,
muitirate successive loop closures is best applied to problems in which the closed-loop system dynamics can be
separated into some fast dynamics and some slow dynamics. The BACT wing however does not exhibit those
closed-loop characteristics. Closed-loop bode plots. from control input to accelerometer outputs of the BACT
wing in feedback with a LQ Regulator, are shown in Fig. 3.8. The LQ Regulator was designed using the cost
function weights for the mach 0.50 75 psf operating point specified in Table 3.2. Therefore the bode plot .~
representati ve of the closed-loop dynamics we are trying to achieve with the flutter suppression system. Notice
that the closed-loop dynamics have only one peak - that associated with the pitch and plunge modes - and do not
exhibit the fast and slow dynamics tracitionally associated with successive loop closures. Consequently, a
traditional multirate successive loop closure structure is not directly applicable to this problem.

Instead of basing our multirate compensator structure on the closed-loop dynamics of the system. we
selected compensator structures which used different sampling schedules to reduce either the number of
computations or the hardware required to implement the compensator. We designed four compensators: a
single-rate (SR): a multirate successive loop closures type (MRSLC); a multirate with multiplexed inputs

(MRMI); and a single-rate fault tolerant (SRFT). All of these compensators are second order except the fault
tolerant design which is fourth order.

3.4.2.1.  Single-Rate (SR)

The single-rate compensator was designed for comparison with the other compensators. A block diagram
of this compensator 1s shown 1n Fig. 3.9. The sample/update rate for this compensator is 50 Hz. This rate is
approximately 10 times the frequency of the dominant pitch and plunge modes. The compensator includes a
0.02 second computational delay. v-hich satisfies NASA's computational delay requirement. This was achieved
by constraining the compensator's direct feedthrough term to be zero.

The state space structure of the compensator is

Jimn+1) 0 1 Hmn)) [0 B](TE Accel(m.n)
= + (3.2a)
Himn+ 1) a a:J (m.n) 1 by || LE Accel(m.n)
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Figure 3.9. Block diagram and corresponding sampling schedule for the SR compensator
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where I and 7, are the digital processor states; TE Accel and LE Accel are the acceleration inputs from the
A/D converters; and CS Cmd is the command output to the zero-order-hold. q;, bi, and ¢; are the free gains
(matrix elements) which were optimized. The other gains were constrained to the values shown. The structure
in Eqn. (3.2) is a minimum realization of the second order compensator. See [Berg, Mason & Yang 1991] for a
discussion of minimum realizations. The sampling schedule for Eqn. (3.2) is shown in Fig. 3.9,

3.4.22.  Multirate Successive Loop Closures (MRSLC)

The MRSLC compensator was designed to reduce the total number of multiplications per unit time
performed by the compensator's digital processor. The compensator is comprised of two first order loops. Both
loops have two inputs, TE and LE acceleration. and one output. CS command. One of the loops is
sampled/updated at S0 Hz, the same as the single-rate design, and the other is sampled/updated four times

slower at 12.5 Hz. Just as in the single-rate design, the direct feedthrough terms were constrained to be zero,
resulting in a 0.02 second computational delay.
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Figure 3.10. Block diagram and corresponding sampling schedule for the MRSLC compensator
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The net result of this two loop configurauon is a compensator structure just like the single-rate design
except that the digital processor needs to update one of the digital processor states only every fourth
sample/update period. A block diagram of this compensator along with a diagram of its sampiing schedule is
shown in Fig. 3.10. Note that this diagram only illustrates the structure of the compensator - it is not a
schematc of how the compensator would be implemented. When actually implemented. this compensator will
use the same number of D/A and A/D converters as the SR compensator, but will require 37% fewer real-time
muluplications per unit time.

The choice of sample/update rates for the slow loop was arbitrary within the constraints of the GMCLS.
Our goal was simply to reduce the number of multiplications required by the compensator without significantly
degrading its performance. The 12.5 Hz sample/update rate was chosen because it is a good compromise
between the total number of multiplications saved by utilizing this multirate structure and the ratio of the fast to
slow sampling rates. Figure 3.11 shows the percent reduction in the number ot muitiplication by using the
MRSLC design over the SR design. There is a decreasing return in computational savings as the ratio of the
fast to slow sampling rate increases. In the limit. the compensator degenerates to a first order compensator with
a reduction 1n multiplications of 50%. Based on Fig. 3.11 we chose a sampling rate rauo of 4.

The state space structure of the compensator which was used for the optimization is

T 3,
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Figure 3.12. Block diagram and corresponding sampling schedule for the MRMI compensator
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where 7| and 77 are the digital processor states; TE Accel and LE Accel are the acceleration inputs from the
A/D converters; and CS Cmd is the command output to the zero-order-hold. a;, b;, and ¢; are the free gains
which were optimized. The other gains were constrained to the values shown. The structure in Eqn. (3.3)
corresponds to the successive loop closures structure of Fig. 3.10. The intermediate outputs CS Cmpy and
CS Cmp; were added to ensure that Eqn. (3.3) corresponded to Fig. 3.10.

3.4.2.3.  Multirate with Multiplexed Inputs (MRMI)

The multirate compensator with multiplex inputs was designed to reduce the number of A/D converters
required to implement the SR design. In this design, the compensator state and output updates occur at 50 Hz.
The outputs of the TE and LE accelerometers are sampled at 25 Hz with a 0.02 second delay between the
sampling of the TE accelerometer output and the LE accelerometer output. Thus, the MRMI requires only one
A/D converter to sample both accelerometer outputs because it can be multinlexed between the two signals. In
addition, the digital processor gains for the MRMI compensator are periodic {ly time-varying. One set of gains
is used when the TE accelerometer output is ~ampled and another set is used when the LE accelerometer output
is sampled. Just as in the single-rate design, the direct feedthrough terms were constrained to be zero. resulting
in a 0.02 second computauonal delay. This compensator requires the same number of muitiplications per unit
time as the SR design but it uses only one D/A converter. Figure 3.12 shows a block diagram of the MRMI
compensator.

The state space structure of the MRMI compensator is

Z](m.rH-l)} 1} 1 g(m.n) 0 b(n)]|{TE Accel(m.n) (3.43)

= + K

HL(m.n+1)) [a](n) as(n) || Z(m.n) 1 by(n)||LE Accel(m,n)

CS Cmd(m.n)=[cl(n) c;_(n)]{fl(m'n)} (3.4b)
S(meny

where I} and ) are the digital processor states; TE Accel and LE Accel are the acceleration inputs from the
A/D converters; and CS Cmd is the command output to the zero-order-hold. a;(n), b;(n), and c;(n) are the free
gains which were optimized. These gains are functions of n because they are periodically time-varying, e.g.

aj(n) = a;j(n+2) The other gains were constrained to the values shown. The sampling schedule for Eqn. (3.4) is
shownn Fig. 3.12.
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Figure 3.13. Block diagram and corresponding sampling schedule for the SRFT compensator

3.4.2.4.  Single-Rate Fault Tolerant (SRFT)

The single-rate fault tolerant compensator was designed to highlight the multiple plant capability of our
synthesis algorithm. This compensator is fourth order with a sample/update rate of 200 Hz and a 0.005 second
computational delay. A block diagram of the compensator and its corresponding sampling schedule are shown
in Fig. 3.13. The state space representations of the SRFT compensator is similar to the 279 order single-rate
compensator with the exception that the digital processor is fourth order.

The SRFT compensator is fault tolerant in the sense that it stabilizes al. the plant conditions even with one
of the accelerometers disconnected. To achieve fault tolerance for all 24 plant conditions, we optimized the
compensator for 22 simultaneous plant conditions - as opposed 1o just six for the preceding designs. Thesc
include the six operating points used in the previous designs evaluated at three cases each: 1) both TE and LE
sensors active: 2) only the TE sensor active; and 3) only the LE sensor active. In addition to those 18, we

added four more operating points at mach 0.50 evaluated for the case where only the LE sensor 1s active. These
operating points are grayed in Table 3.2.

3.43. Designing a Stabilizing Compensator

We used the synthesis u!gorithm presented in Section 2.4 to opumize the gains of the four compensators
discussed in Section 3.4.2. The algorithm requires an initial guess for the compensator's digital processor gains
for which the closed-loop system, the BACT wing and compensator. is stable. The difficulty in finding these
gains is that the closed-loop system must be stable at all operating points used in the optimization.

To get a stabilizing guess for the wing at all operating points we used a boot-strapping technique. First we
found values of the processor gains which stabilized the BACT wing at one operating point. Then we optimized
the gains for the wing at that one cperating point using large values for the plant disturbance noise and sensor
noise intensities. The large value of noise intensities introduced uncertainty into the plant. Consequently. the
resulting compensator was more robust than a compensator optimized for a plant with no noise. This new set of
processor gains always stabilized the wing at the original operating point plus at least one other operating point.
We then used the new processor gains as the initial guess to the problem with the wing at two (or more)
operating points. The procedure was continued unt! the compensator stabilized the plant at all the operating
points and the problem could be solved using reanstic noise intensities.

Before beginning the bootstrapping procedure we needed to find a set of processor gains which stabilized
the closed-loop system for at least one operating point. This was straightforward for the SR and MRSLC
compensators. We designed a first order single-rate compensator with pitch acceleration input, CS command
output and a sampling rate of 50 Hz. Recall from Section 3.2.2 that pitch acceleration is essentially the
difference in the TE and LE accelerations. The pole location and gain value of this compensator were found
using root locus. The initial stabilizing guess for the SR design con.isted of this first order compensator 1n
parallel with an arbitrary first ordes compensator that had an input/output gain of zero. For the MRSLC system,
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we used the first order compensator as an initial guess for the fast loop of the successive loop closures structure,
and an arbitrary first order compensator, with an input/output gain of zero, for the slow loop.

An initial guess for the MRMI processor gains was more difficult to find than for the SR and MRSLC
compensators. Due to its complex sampling schedule we could not design an initial guess by traditional
methods. Instead, we designed a compensator with the multiplexed structure but with very smail gains. Then
we used the bootstrapping technique, beginning with the BACT wing operating at a low dynamic pressure
where it is open-loop stable. Since the compensator gains were very small, they did not destabilize the wing
and could he used as an initial guess. The bootstrapping process for this compensator took several iterations,
verses one or two for the other compensators, because we began with such a poor initial guess.

To obtain an initial guess for the SRFT processor gains we began by designing two 274 order
compensators. One stabilized the plant when the LE sensor was disconnected, the other stabilized the plant
when the TE was disconnected. We then combined these two compensators into a single 4 order design and
adjusted their gains until the new fourth order compensator stabilized the plant when both sensors were active or
when only one or the other was active. Finally this design was used in the bootstrapping procedure discussed
earlier to obtain a single fourth order compensator which stabilized the wing at all operating points.

344. Optimizing the Digital Processor Gains

We optimzed the digital processor gains of the three compensators with the algorithm discussed in
Section 2.4. The optimization used the following parameters:

Plant Conditions: Six simultaneous operating points for the second order designs; 22
simultaneous operating points for the fourth order design. See Table 3.2 and
Section 3.4.2.4

Cost Function Weights: The second order designs used the cost function weights listed in Table 3.2.

The fourth order design used the weights in Table 3.2 for cases where both
the TE and LE sensors were active, and one-tenth those values for cases
where either sensor was inactive

Process Noise PSD value: 36in2/sec? - this is the intensity of the white noise input to the Dryden filter
and was specified by NASA

Sensor Noise PSD value: 0 rad?/sec for initial designs. 240 rad2/sec? for final designs. This is
discrete sensor noise for the TE and LE acceleration measurements

Initial Stabilizing Gains: Obtained using root locus and bo - strapping, see Section 3.4.3

Compensator Structure: See equations (3.2)-(3.9)

Sampling Schedule: See Figures 3.9, 3.10, 3.12 and 3.13.

Gain Constraints: In all designs the direct feed through terms were constriined to be zero.
Additional gain constraints for each compensator are specified in
Section 3.4.2.

The M-Files which define the above input parameters for the synthesis software presented in Attachment 4 are
documented in Appendix B

34.5. Design Iteration Based on Performance and Robustness Analysis

After synthesizing the multirate compensators we evaluated their performance and robustness using the
methods discussed in Section 2.5. One of the robustness measures was the maximum singular value of the
minimum destabilizing multiplicative uncertainty at the compensator inputs (a structured singular value). When
we synthesized the compensators using a sensor noise covariance intensity of zero, the size of the destabilizing
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gain was unacceptably small - less than 0.20 for the BACT wing at some operating points. NASA had specified
a value of 0.75. To improve the robustness at the compensator input we increased the sensor noise intensity to
240 rad?/sec4 and re-optimized the processor gains. This procedure was motivated by the Loop Transfer

Recover technique for LQG systems described in [Doyle & Stein 1981). The resuits of increasing the sensor
noise are discussed in the following Section.

3S. DESIGN RESULTS

We designed four compensators using the approach discussed in the previous sections. For review, the four
are the:

1)  Single-Rate 2™ Oraer (SR)

2)  Multirate 279 Order Successive Loop Closures (MRSLC)

3) Multirate 24 Order Multiplexed Input (MRMI)

4)  Single-Rate Fault Tolerant (SRFT)

The structure of each of these compensators was discussed in Section 3.4.2. Optimum values for the digital
processor gains are given in Appendix A.

We looked at five performance and robustness measures:
1) Cost function value

2)  Gust pulse response

3) Maximum RMS gain from disturbance to the control surface deflection and deflection rate
4)  Gain and phase margins at the compensator output

S) The maximum singular value of the minimum destabilizing multiplicative uncertainty at the
compensator input

Results are presented for three operating points, mach 0.50 132 pst, mach 0.70 146 psf, and mach 0.78
151 psf. Each of these operating points is 5 psf above the critical flutter dynamic pressure for the corresponding
mach number, and so the BACT wing is nominally unstable at each of these operating points. It is importani to
note tha: none of these operating points were used for the compensator optimization. Therefore the
compensators were not tuned to these particular operating points. In general, the performance and robustness of

the compensators at these three operating points is indicative of their performance at the remaining 21 operating
points.

3.5.1.  Cost Function Value

One measure of the overall steady-state performance of a compensator is the value of the cost function in
Eqn (3.1) at the optimum value of the digital processor gains. (A value for the cost function is returned by our
synthesis algorithm at the completion of the optimization.) For our 2@ order designs, a “perfect” compensator
would have a cost function value of 6, assuming no sensor noise. The “perfect” fault tolerant design would
have a cost of 7.6 since it optimizes a different cost function. By “perfect’” compensators we mean continuous
LQR designs with gain scheduling, i.e.. thev use a different set of feedback gains at every operating point. We
expect the costs associated with our compensators to be higher since they used discrete sampling, did not use
2ain scheduling, and had fictitious sensor noise.

[t is more realistic to compare the cost of our compensators to that of a discrete LQG design with fictitious
sensor noise and gain scheduling. This comparison eliminates some of the differences due to sampling and
fictitious sensor noise. The cost associated with the discrete LQG compensator is the lowest cost we can expect
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for a given sampling rate and sensor noise level. Table 3.3 summanizes the values of the cost function for the
discrete LQG and for our four designs. The costs associated with our second order compensators are almost
twice that of the discrete LQG design. This is not surprising since the discrete LQG is significantly more
complex - it is a 16" order compensator with gain scheduling.

3.5.2. The Gust Pulse Response

The gust pulse response provides an indication of the transient response of the closed-loop system due to a
disturbance input. The gust pulse response was found by simulating the response of the BACT wing in
teedback with the flutter suppression system 1o a disturbance input pulse with an amplitude of 10 in/sec and a
duration of 0.004 seconds. This simulation was performed using the M-file mrsim described in Attachment 4.

Figures 3.14-3.16 show the response of the BACT wing at mach 0.70 and 146 psf to the specified
disturbance gust puise. Also shown is the response of the wing with a continuous LQ regulator. The cost
function weights for this LQ regulator design satisfy the same design criterion as was used to optimize the
compensator's gains. (See Section 3.4.1.) We provided response plots for only one operating point. The gust
pulse responses at other operating points are similar to those provided in Figs. 3.14-3.16.

For comparison we also provided a gust pulse response plot for the 279 order compensators synthesized
without fictitious sensor noise. Recalil that fictitious noise was added to the sensors in order to improve the
robustness at the compensator input. Figure 3.17 shows the pitch response of the BACT wing at mach 0.70 and
146 psf due 10 a gust pulse disturbance. The primary effect of adding sensor noise is to decrease the damping
of the pitch and plunge modes. The reduction in damping is more prevalent in the pitch response than in the
plunge response.

The gust pulse response plots are shown below.
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Figure 3.14. Plunge gust pulse response at mach 0.70 146 pst
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Figure 3.19. Block diagram of discrete system for calcuiating RMS gain and corresponding sampling schedule

3.5.3. RMS Gain for Control Surface Deflection and Deflection Rate

One of NASA's spec:fications was .. .nit on the steady-state covariance of the control surface deflection
and deflection rate for a 1 in/sec RMS white noise disturbance. Our closed-loop system consists of a continuous
plant and a discrete compensator. Therefore these steady-state covariances are periodically time-varying. In
Fig. 3.18 we show the steady-state covariance propagation for the BACT wing in teedback with the three
compensators at an operaung point of mach 0.70 and 146 psf for a unity RMS white noise disturbance.

We caiculated the values of the steady-state covariance at the sample/update times using the method
described in Section 2.5.4. Between the sample/update times of the compensator, the covariances were
propagated using the dynamics of the open-loop continuous BACT wing. The steady-state covariances are only
shown tor one BTP of the compensator - they repeat themseives during every BTP of the compensator.

One meaningful interpretation of NASA's specification would be to look at the peak steady-state
covarance value taken from this covaniance plot. This value, though, 1s an upper limit on the closed-loop gain
tor a white noise disturbance and is not an accurate indicator of the control activity level. A better measure of
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control activity would be the maximum RMS gain calculated using Eqn. 2.25. This is an exact measure of the
maximum RMS gain for any non-decaying input signal.

In order to apply Eqn. (2.25). which is for a discrete system, 1o our mixed continuous/discrete system we
created a new discrete multirate system in which the continuous inputs and outputs of interest are sampled very
fast (see Section 2.5.3). We chose a sampling rate for the CS deflection and deflection rate of 1000 Hz. This is
more than twenty times the control surface actuator rolloif frequency. A block diagram of this new discrete-
time system, with the single-rate compensator of Eqn. (3.2), is shown in Fig. 3.19 along with its sampling
schedule. This new system is now multirate even though the compensator is single-rate. The ETIS for this
system has a sample/update rate of 1000 Hz and an N of 20.

We used this new ETIS system to calculate the maximum RMS gain of the original system between the
disturbance and the CS deflection and between the disturbance and the CS deflection rate. The maximum RMS

gaias for the BACT wing at three operating points are summarized in Table 3.3. See also the related work of
[Sivashankar & Khargonekar 1991].

354. Gain and Phase Margins at the Compensator Output

Gain and phase margins were calculated at the compensator output using the ETIS and a multiloop Nyquist
diagram. The ETIS of the plant and compensator were computed independently and then combined in series to
form an ETIS loop transfer function. Gain and phase margins were subsequently measured directly off the
multiloop Nyquist plot of this function. These are traditional gain and phase margins, and assume that the gain
and phase do not vary simultaneously. The details of this technique are given in Section 2.5.1, [Mason 1992),
and (Mason & Berg 1992) (Attachment 2).

The gain and phase margins for the BACT wing at three operating points are presented in Table 3.3. These
values are typical of the margins at all 24 operating points, although the margins tend to be better at lower
dynamic pressures and slightly worse at higher dynamic pressures. A representative Nyquist diagram is shown

in Fig. 3.20. This particular Nyquist plot has two encirclements of the -1 point tiecause the open-loop plant has
two unstable poles.

Figure 3.20. Multiloop Nyquist for BACT wing at mach 0.70 146 pst with MRMI compensator
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3.5.5. Robustness at the Compensator Input

The uncenainty at the compensator 1nput was assumed to be a multiplicative perturbation of the form
shown in Fig. 3.21, where k| and k2 are complex gains. We transformed this system into thie output feedback
form traditionally used in robustness analysis using simple block diagram algebra. However. when the
compensator is multirate we must use the ETIS of the plant, compensator and uncertainty. A block diagram of
this closed-loop ETIS for the muitirate flutter suppression system is shown in Fig. 3.22. Gg is the loop tra.isfer
function consisting of the compensator and plant ETIS transfer functions connected in series.

Now, given the system in the form shown in Fig. 3.22, we can calculate an exact value for the size of the
smallest destabilizing perturbation {Doyle 1982] . First rewrite Ag in Fig. 3.22 as

A=l k) + hig (3.5)

where /) = diag{1010...1 0} with 2N diagonal elements. and where I> has a similar form. Then it can be
shown that

-1
G(Amm)=(sup mgx p{[ll +15 eJOIHE(eN\}) for0<o<mand0<O<2r: (3.6
0

where G(Amn) represents the maximum magnitude of the smallest destabilizing ki or k2. p 1s the spectral
radius: and He@2V) = (1 - Gg @) -1Gg V),

We are guaranteed that the system in Fig. 3.21 will remain stable as long as

k 0 ,
6‘[0 kz:l<o'(Am,-,,) 3.7

We are also guaranteed that when Eqn. (3.7) is violated. there exist values of ki and k) that destabilize the
system in Fig. 3.21,

Equation (3.6) 1s straightforward 1o solve with a two dimensional search in ¢ and 6. The results are given
in Table 3.3. For comparison. the corresponding resuits for the design without the fictitious sensor noise are
also given in Table 3.3 Notice that the addition of the fictitious noise increases the maximum singular value of
the smallest destabilizing uncertainty by as much as 60%.

Even with the fictitious sensor noise, the robustness at the compensator inputs does not meet NASA's
specification for a maximum singular value of 0.75. We could have improved the robustness at the
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tompensator output further by increasin

g the fictitious sensor noise level, but we chose not to do so because this
simultaneously reduces the gain and ph

ase margins at the compensator output.
3.6. CONCLUSIONS

The performance and robustness of the three 27d
stabilize the BACT wing at all 24 plant conditions and, w

input, satisfy all of NASA’s specifications. From this
designs over the single-rate desiga.

order compensators are nearly identical. All three
ith the exception of the robustness at the compensator
perspective there is little reason to use the multirate

on the costs of the hardware, such trades might be very advantageous.
The 4% order fault tolerant design, on the other hand, does not satisfy NASA robustness specifications.
The compensator does, however, meet the robustness specifications to which it was designed. It stabilizes the

BACT wing at all 24 operating point even if one of the accelerometers fails. This type of robustness - to a very
specific perturbation - would be difficult to achieve using more ¢
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4. CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

The principle advantage of multirate control is that it gives the designer freedom to choose a sampling
schedule which best utilizes the available hardware and software. In the flutter suppression system design, for
cxample, we developed multirate controllers that provide performance comparable to a single-rate design, yet
require either fewer real time multiplications per unit time to implement or require fewer A/D converters.

The disadvantage of multirate control is that this additional flexibility substantially increases the
compiexity of design and analysis over the single-rate case. Undoubtedly, the lack of good design and analysis
tools has discouraged many from applying multirate control even when the situation may be idea! for a multirate
design.

In this report we addressed the difficulty of multirate design and analysis by presenting a multirate design
methodology. The methodology specifies a design approach and provides specific tools necessary to apply the
approach to a practical problem. The tools are for modeling a multirate system, for synthesizing a multirate
compensator which is robust to plant perturbations, and for analyzing the performance and robustness of a
multirate system. The resulting methodology is powerful and straightforward to apply.

To demonstrate the methodology we applied it to design several multirate compensators for NASA's

BACT wing. Those compensators satisfy the specified design specifications and illustrate some of the benefits
of multirate control.

4.2. RECOMMENDATIONS FOR FUTURE RESEARCH

1) Our synthesis algorithm currently requires a stabilizing initial guess for the digital processor gains.
Obtaining a stabilizing initial guess for those gains can be difficult. especially when the muitiple plant
conditions capability of the aigorithm is used, because the initial guess must stabilize all plant

conditions simultaneously. Eliminating this requirement would substantially improve the algorithm’s
versatility.

2)  The singular value analysis of multirate systems leads directly to a structured singular value problem
with repeated blocks. Calculating an exact solution to this problem is difficult for all but the simple
tow parameter case. This is an area which needs further research.

o
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APPENDIX A. DESIGN RESULTS

Following are the state space matrices for the optimized flutter su

ppression system digital processors
discussed in Section 3.0.

A.l. SINGLE-RATE 2" ORDER

STP=BTP=0.02 sec: N=1. See Section 3.4.2.1 for a description of the sampling schedule.

Gm+lO] [ 0 1 Tzmo L[o -0.87258 [ TE Accel(m,0)

L(m+1.0)| | -0.61542 13562 | z,(m.0) 1|1 —0.94601 LE Accel(m,0)
2. ’0

CS Cmd(m,0)=10"[2.8302 -13.621] 4i(m.0)

A2, MULTIRATE SUCCESSIVE LOOP CLOSURES

STP=0.02 sec; BTP=0.08 sec; N=4. See Section 3.4.2.2 for a description of the sampling schedule.

Update during first STP of the BTP:

I(mb ] _[0.75673 0 Tz;m,0) L[ -1 0376447 TE Accel(m.0) {{
Gm+lO)] [ 0 0.47672 7(m,0)|T[-10™* 0.53661 | LE Accel(m.0)

7m0 .
CS Cmd(m,0)=107%[2.35354 2.5338] & "™ ¥ ‘
7s(m,0)

Update during second STP of the BTP:

wAgPvenr o

TE Accel(m, 1)

Z,(im2)=0.756733.(m.1 -1 0.37644
y(m.2) pim D+ 3 ][LEAccel(m.l)J

Z,(m.0)

|
|
|
CSCmd(m,1)=10 [—2.5338 2. 35354] 1
Update during third STP of the BTP: 1

TE Accel(m, 2)
If(m.3)=0.75673z,(m.2)+[~1 0.37644]

LLE Accel(m, 2)

2)

CS Cmd(m.2) = 10~%[-2.5338 2.35354][? ((""" 0)] 1
S .

|



Update during fourth STP of the BTP:

TE Accel(m,3
F.f(m+l,0)=0.75673zf(m,3)+[_l 0.37644][ ccel(m )]

LE Accel(m,3)
Zr(m,3)]

CS Cmd(m,3)=10°4[—2.5338 2.35354] :f .
Z(m,0)

We assumed that Z; is updated during the first STP of the BTP, but it it can

be updated during any STP of
the BTP.

AJ3. MULTIRATE MULTIPLEXED INPUT

STP=0.02 sec: BTP=0.04 sec; N=2. See Section 3.4.2.3 for a description of the sampling schedule

Update during first STP of the BTP: Only the TE Accelerometer is sampled. The LE Accel value is held
from the previous STP.

3(m,1) _ 0 1 1(m,0) -1.3322 186.76 TE Accel(m,0)
RmD | [~0.14712 0.88072 | 5(m.0)|*| -0.75421 136.42 || LE Accelim—1.1)
&(m,0
CS Cmd(m,0)=10"5(8.6277 ~8.7583) ¢"®)
Z(m,0)

Update during second STP of the BTP: Only the LE Accelerometer is sampled.The TE Accel value is held
from the previous STP.

Gm+l0] [ 0 o Taomn] [-25371 -191.09T TE Accelim.0)
Zm+1.00 [ [-23304 37275 | 5m.) || -0.28724 -189.04 | LE Acceim.1)
3(md
CS Cmd(m.1) = 107[3.7645 -4.69]0][ "("' I;]

32 m,

wifiaP - -




Ad. SINGLE-RATE FAULT TOLERANT

STP=0.005 sec: BTP=0.005 sec: N=1. See Section 3.4.2.4 for a description of the sampling schedule.

Hm+1.0) 0 1 0 0 Z(m,0)
3(m+1.0) _ e 0 1 0 Z3(m.0)
Him+1.0)| 0 0 0 1 | 5m.0}

Lim+L0)j |-0.48177 2.4151 —4.3750 3.4415§Z,(m.0)

[ 4.2073 6.4437

-0.06264  1.3823 [ TE Accel(m.0)
-2.1575  -1.1393 [LEAcccl(m,O)J
[-3.1600 ~2.3865

:‘l(m.O)]

(m,0)

33(m,0)

[34(m.0)

+1073

CSCmdim,0)=(1 0 0 0]

45
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APPENDIX B. M-FILES USED TO DEFINE THE FLUTTEk
SUPPRESSION SYSTEM SYNTHESIS PROBLEM

B.1. PAPA ABCD
Formaz: {am, bm, cm. dm. vm |=PAPAabcd (fname , rolloff. form)

Description:  Creates state space matrices defining the PAPA wing at operating point specified in fname such
that

X =amx + bmu
y=cmx+dmu

(plunge A

pitch

plunge rate

pitch rate

TE accelerometer

LE accelerometer
command to actuator

where v = 4 CS control surface ? and u= gs Z::‘gﬁ:f input }

CS control surface rate R P

CS control surface accel

mode |

mode 2

mode 3

§ mode 4

Inpuss fname text variable containing the name of the operating point of interest. e.g. 'freon_m5_q75°.
fname must have the same name as the file which contains the data

rolloff frequency in rad/s=c of first order anti-aliasing roll-off at the sensors. The filter has the
form

rolloff
Yfiltered = s+rolloff Yunfiltered

form indicates the desired form
if form= 0:am.bm.cm.dmis unchanged frcm original data
| : am, bm, cm. dm is block diagcnal
2: am. bm.cm. dm is block diagonal with scaled states and outputs

Outputs : am, bm. cm. dm  state space description of the plant
vm transformation matrix used to obtain modal form
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B.2. FSScomp

Formar: {emp, sz. s, sy, stp, stppbtp = FSScomp( ctype)

Description:  Generates the digital processor gain matrices and sampling schedule description for the four
compensator described in Section 3.

Inputs: ctype specifies the desired compensator
if ctype = ' then FSSemp returns a description of the 2@ order Single-Rate design

‘mrslc’ then F SScmp returns a description of the Multirate Successive Loop
Closure design
mmi’  then FSSemp returns a description of the Multirate w/ Multiplexed Input
design
‘srft  then FSScmp returns a description of the Single-Rate Fault Tolerant
design
Outputs : cmp, sz, su, sy, stp, stppbtp a description of the compensator used by the synthesis al gorithm.
See Attachment 4.

B.3. MROPT_SR OR MRMI
Format: mropt_srORmrmi

Description:  Defines the input data for the 279 order single-rate compensator or multirate compensator with
multiplexed inputs. The user needs to comment and uncomment three lines to switch between
the SR and the MRMI design. These are indicated in the text of the script.

Inpuss none

Outputs: Outputs to global variabies used by optimization routine and defined in Section 3.3 of
Attachment 4

B4. MROPT_MRSLC
Formar: mropt_mrsic

Description:  Defines the input data for the mulurate compensator with successive loop closure form.

Inputs : none
Outputs : Outputs 10 global variables used by optimization routine and defined in Section 3.3 of
Autachment 4

B.S. MROPT _SRFT

Formar . mropt_srft

Description:  Defines the input data for the single-rate fault tolerant compensator.

Inputs none

Outputs : Outputs 1o global variables used by optimization routine and defined in Section 3.3 of

Attachment 4

i P
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Reduced-Order Multirate Compensator Syathesis

Gregory S. Mason and Martin C. Berg
University of Washington, Seatile, Washington 98195

A method for synthesizing reduced-order multirate compenasators is presented. Necessary conditions for which
the compensator parameter values minimize an infinite time quadratic cost function are derived. An algorithm
for finding compensaior parameter values which satisfy the necessary conditions is described. This algorithm is
then used (0 design several tip position controliers for a two-link robot arm.

Introduction

I N many cases, a multirate compensator can provide better
performance than a single-rate compensator requiring the
same number of real-time computations. Berg, for example,
was able to reduce the steady-state rms response of states and
controls to a disturbance for a simple mass-spring-mass system
nearly 20% by using a multirate compensator over a single-rate
compensator.! Numerous other examples have been provided
in the literature by Berg,'> Amit,*’ and Yang.® Although
multirate compensators can provide improved performance
over single-rate compensators, they are also, in general, more
complicated to design.

The complexity of multirate compensators stems from the
fact that they are by nature time varying, periodicaily time
varying for most practical applications. Not only must design-
ers choose multiple sampling/update rates for the compensa-
tor, but they must also determine the parameter values for a
time-varying compensator.

One method for designing mu'tirate compensators is multi-
rate linear quadratic Gaussian (LQG).* Multirate LQG is the
multirate equivalent of single-rate LQG and is straightforward
to solve because the equations governing the solution are sim-
ilar to those for the single-rate case. Multirate LQG, however,
results in a full-order compensator which has periodically
time-varying gains. For many applications full-order. time-
varying compensators are not practical.

A generalized algorithm for multirate synthesis (GAMS)*
was developed by Yang to overcome many of the shortcomings

of multirate LQG. Yang’s algorithm can synthesize reduced-
order multirate compensators with or without time-varying
gains by using a numerical gradient-type search to find opti-
mum compensator parameter values. His algorithm uses a
finite time cost function in its problem formulation, unlike
multirate and single-rate LQG which use an infinite time cost
function. By using a finite time cost function, Yang’s algo-
rithm eliminates the numerical problem that arises when a
destabilizing compensator is encountered duning the numerical
search. Even though Yang’s algorithm uses a closed-form ex-
pression for the gradient, the calculations necessary to per-
form the gradient-type search are extremely cumbersome.

In this paper, we present a new algorithm for synthesizing
reduced-order multirate compensators with or without time-
varying gains. The algorithm utilizes the compensator struc-
ture of Yang’s algorithm, but the problem is formulated using
an infinite time, instead of a finite time, cost function. This
allows us to derive necessary conditions for which the muliti-
rate compensator minimizes the cost function. The equations
for the necessary conditions are fairly simple and can be solved
directly using a standard nonlinear equation solver, eliminat-
ing many of the numerical complexities of Yang's algorithm.

General Mulitirate Compensator

Before deriving the equations governing a reduced-order
muitirate compensator, we will first present the structure fora
general muitirate compensator. We restrict our discussion for
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cugiscering (rom Goazags University in 1983 snd the M.S. degree in Computer Integrated Msaulacturing from
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MASON AND BERG  MULTIRATE COMPENSATOR SYNTHESIS "ol

now to compensators with time-invariant gains and samphing/
update rates whose ratios are rational numbers.

A general multirate compensator is shown in Fig. 1. Each
input y, output u, and state 7 is sampled/updated at a rate
which. in general. represents the desired bandwidth of the
input or outpur with which it ts associated. The variable ¥ is the
value of v currently available to the digital processor from the
zero-order hold; while & 1s the current output from the digital
processor which is held with a zero-order hold 1o form the
output ¥. When the sampling/ update rates have ratios which
are rational numbers, the sampling/ update schedule is pertod-
ically time varying. We define the greatest common divisor of
all of the sampling- update periods as the shortest time period
(STP) and the least common multiple of all of the sampling/
update periods as the basic time period (BTP) (see Fig. 2).

The state equations for the multirate compensator pictured
in Fig. 1 are

ta

[l-s:ll‘s:‘i;‘ S;‘AB[’—S> Al 0

v = 0 (1-5,.4) 0

i), ., saaC suxDil =5, ) [1-5,,]
N S:JBSV.A

X4V - S, Vi (1)
ﬁ Su.kDvak

’y

u,,=[$.,“c S,‘..DII’S‘ k] [I-‘Su.kl}

R Ny

+{5uxDs, i 1ys (2)

where 4 is a hold state used 10 model the sampler and zero-or-
der hold between & and u. Thes, ,, S:.x,ands, , are switching
matrices for v, 3, and u, respectively, that model the system’s
sampling/update activity at the start of the kth STP. Also.
S« « has the form

rr 0 0 0 :

0 r. 0 0!
Ses =

0 0 L IPYE

0 0 P, |

where

I ifthe sth **" (3, v, or u) is sampied/updated
at the start of the kth STP

0 otherwise
m . = the number of states (J)

m._ = the number of inputs (v)
m, = the number of outputs (u)

Y gt
e N ST

et = T + D -
~{ZoH}— —{ZoR—"—
\ Zero Order Hold ¥ Drguial Processor

Fig. | A general multirate compensator.

Fast Sampling Scheme M

Slow Sampling Scheme =+ ;?: +
e L—STP

Fig.2 Exampie of 2 multirate sampling scheme.

8TP

A more complete discussion of this compensator structure can
be found in Refs. 6 and 7.
Equations (1) and (2) can be written more compactiy as

LA T8, )
Uy = Cr:k hd Dh LN ‘4)
where
m{y
u

A

Equations (3) and (4) form a single-rate periodically time-
varying system with a sampling rate of one STP and a period
of one BTP. If N=BTP/STP, then A, = A, . .. 8, =8,..,
Cﬁ =Cg./\,, and D‘ =D*.u.

Even though 4,, B,, C,, and D, are periodically time vary-
ing, the multirate compensator gains, A, B, C. and D. are time
invariant. The periodic:ty of the muitirate compensator is due
to multirate sampling/updating, not the compensator gains. In
the remainder of this section, we will demonstrate how the
lime-invariant compensator gains. A, B, ¢, and D, can be
separated from the periodic compensator matrices 4, , 8..C,,
and D,.

Define the composite compensator matrix as

Dh C‘]
P, = S
n [B. A.J (S)
and factor P, as follows:
P. = S,.PS;; + S“ (6)
where
b ¢
B= i 7
5 ¢ )
s.. O "
0 ..,
Sy. = 0 0 ‘8)
S.a

- 9
=l 0 o o ™
"0 0 0 /-5,
0 -5, 0 0 I
Su-!s'. 0 I-s., 0 (10
0 0 0

,’sua

Equation (6) 1s a key result. It allows us to factor the tume-
invanant compensator gains, the unknown parameters we
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will solve for in the next section. out of the time-varying
compensator.

It is important to note the difference between P, and B in
Eq. (6). P, (with a subscript) is a periodically time-varying
matrix defined by Eq. (5). It includss all of the information
about the compensator gains and the sampling/update sched-
ule. Pis a constant matrix which contains only the gains for the
compensator. P, can be written in terms of Pand S,,, S, , and
Sy using Eq. (6). S\4, Sy, and S;, are periodically time-vary-
ing matrices which contain a description of the sampling/up-
date scheme.

Derivation of the Necessary Conditions
In this section, we will use the results of the previous section
10 derive the necessary conditions for the reduced-order multi-
rate compensator. The multirate problem 10 be solved is as
follows.
Given:
the discretized piant model

i..|=Fi. +Gﬁ.+WW‘ (‘l)
j’. = ”j. + Vv (l2)

where £, G, W, and A are obtzined by discretizing the analog
plant matrices at one STP; w, and v, arc discrete-time Caus-
sian white noise inputs; & is the control input from the com-
pensator; and § is the sampled sensor output.

Find:

the muitirate control law witk, g prescribed dynamic order and

sampling schedule, of the form of Egs. (1) and (2) which
minimizes a quadratic cost function of the form

BT A w

where E is the expected value operator, and the summation
from 1 to N accounts for the fact that the closed-loop system
is periodically time varying. A prescribed sampling schedule
implies that the values of s, , , S, and s, , are known.
Using Egs. (3) and (4), it is easy 1o see that this problem is
essentially a time-varying feedback problem—a time-invariant
plant with a periodically time-varying compensator. One thing
that makes this problem difficult is tha: the compensator has
an explicit form, that of Eqs. (1) and (2), in which only certain
parameters, A, B, C, and D, can be adjusted to minimize J.
To solve the multirate control problem, we cast it into out-
put feedback form and follow a derivation similar to Muk-
hopadhyay’s for the single rate case.’? Using Eqgs. (3) and (4)
and Eqs. (11) and (12), we write the output feedback equations

G300 S8 (8 )
s
R D B | R
{z...j ) [a, A,j zj (16)

Equations (14-16) can be written more compactly as

Xao 1= Fx) + Guy + Wn, an
ye = Hx, + vy, (18)
=Py, (19

Itis important to keep in mind that P, in Eq. (i9) corresponqg
to the P, in Eq. (5). a periodically time-varying matrix v-hich
contains all of the information about the multirate compensa-
tor gains and sampling/update rates. '

The closed-loop system is

Xeor = FaXy + Guny (20)

where
Fu=F +GP.H 1)
Grk =W + GP,H (22)

The state covariance propagation for this system obeys
Xaes =F:.XkF£ + G.RG, (23)
where
Xy = E{ka{]. R = E;"h'hr}

Equations (20-22) represent a periodically time-varying sys.
tem with a period «f one BTP. We can generate a single-rate
system by repeated application of Eq. (20) over one BTP.!
The single-rate system can be written as

Xeon = FopXy + Gpynpe (24)
where

Fou “FatoN-I)FmoN-z)F«k.N-»"‘Fu @2s)

Gu = [Ft(koN-l)Fc(toN-ZD'“Fr(to lchlz l

XFepan-nFekon-2 FeiaoGeteary| - le(koN-I)]
(26)
N« .l
Nesi
e = |

This single-rate system has exactly the same values for x as
the periodically time-varying, closed-loop system at each BTP.
However, the values of x at the intermediate STP are lost
because x is incremented by N in Eq. (24) but only by 1 in
Eq. (20). There are N such single-rate systems associated with
Eq. (20). They can be written as

KeoNe, = Fbun\xl‘: * 001'0:)"“15 fOl’ i = 1'2- . -- (27)

If Fy, is stable, then the periodically time-varyirg system
EQq. (20) is stz™le.!' We can caiculate the steady-state covari-
ance for x using the following Lyapunov equations:

X. -F“X.FL + Guk.c{., for k = 12, N (28)

R o 0l
0 R - 0
Ry = ; |
[o o o R

Note that X, i. periodic, that is it varies within one 8TP, but
from BTPto BTP X, = X, . . Once we have calculated X, at
any k using Eq. (28), we can use Eq. (23) t0 propagate it over
the BTP. This eliminates the need 10 solve Eq. (28) N times.

Now, using Eqs. (23) and (1)), and the properties of the

e s
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trace (Tr) operator, we can write the cost function for the
stabilized system as (see Refs. 8 and 9)

7= ZTc[[Qi+ MPH +(MP,HYT + (P.H)TQ:PH| X,
x=1q
~(P.V)TQ.P, VR} 29)

Adjoin the covariance constraints Eq. (23) to the cost J using
Lagrange muitpliers, A, to obtain

7= ET1eflo + MP.H +(MP.H) +(P,H) Q,PH) X,

APV QP VR + AL\ [FuX\FL + G4 RGY, - X, . .]}

(30)
Wllh X|=X'~.|.
Necessary ;onditions for minimum J are
aJ aJ al
—_— = — =, - =) ]
X, A, P Gn

In addition, 3°7/3 P* must be positive definite for a mini-
mum J.

Substituting Eq. (30) into Eq. (31) and replacing P, with
P, =5,,PSy, +S;, from Eq. (6), we obtain

—a., =0= Q] + MP.H + (AWP‘H)r
axX,
+ (Pg”)rongH + FJA*. |F¢- - A (32)

for k = 1.2, . ..N with A =Ason.

aJ
r =0= F‘.X‘,F‘z + GdRG‘.z - Xt‘l (33)
ke
fork=1,2, . N with Xi=Xgun.

aJ M :
5 0=2 ‘;’ s/, {[Q,+G'A...G]P.[Hx.m+ VRV
-[M7+GA L F|XHT) ], (4)

Equations (32-34) are a set of coupled matrix equations.
They make up necessary conditions for A, which is comprised
of the muitirate compensator gain matrices 4 .B,C and D, in
Egs. (1) and (2). to minimize the cost function J. Valuesof A4,
B.C.and D. found by solving Eqs. (32-34), can be substituted
into Eqs. (1) and (2), along with the definition of the sampling
schedule, s. ,, s, ,, and $,.«. to form the complete time-vary-
Ing muitirate compensator.

To ensure that the compensator gains satisfying Eqs. (32-
34) minimize J, we should also check that the Hessian of J
with respect to P is positive definite. Our present algorithm
does not calculate the Hessian explicitly, but uses an approxi-
mate value calculated by the numerical search aigorithm dis-
cussed in the next section.

Equations (32-34) were derived assuming time-invariant
compensator gains. We can easily derive the corresponding
equations for periodically time-varying gains. Let

B'Bh C-C.. D-D, (k1))
with the restriction that Ay, v = A,, 8,., = 8,, Ci.v=t,,

and D, ., = D, . Define the composite periodically time-vary-
ing compensator matrix

b, ¢,
pu = {b: A.J (36)

;‘.jlv
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Then replace A with 5, i Eq. (30) and differentiate with
respect to A, to obrain

aJ
38, =0= S [[Q,+G'A...c]p,[ﬂx,m+ VRV
‘[M’+G’A,,..F]X.H’]S{, for k =1.2, N (37

Thus, for every new set of compensator gains we obtain one
new equation of the form of Eq. 37).

Equations (32-34) are very similar 10 the single-rate equa-
tions. In fact, if we set Sies Sy, and S34 50 that they corre-
spond 1o a single-rate system, and N =1, we obtain the exact
results derived by Mukhopadhyay for the single-rate case.?

Implementation

To find a reduced-order multirate compensator that mini.
mizes the cost function J, we need to solve Egs. (32-34) for the
compensator gains . A flowchart of the algorithm used 1o
determine the compensator gains is shown in Fig. 3. Using the
prescribed sampling schedule the algorithm first discretizes the
analog plant model, analog cost function, and analog process
noise model. (See Ref. 2 for a discussion of the relevant dis.
cretization procedures.) Equations (32-34) are then solved for
the compensator gains using a gradient-type search in Mat-

Discretize the analog plant, weighting mamces
and process noise covariance
%
Build the matrices £, G, W, H. V, and P
using (14) - (16)

)

Get a sabilizing compensator ]
2
'Y

Calculate X, using (28) then propagate
Xyusing (23) to obtan X. X, ... Xy
$

Calculaie Ay using (A.4) then propagaie
Ay using (A.3) 10 obuin Ay \..... A,

P
Calculate g-ﬁ- using (34)
‘ ——
L Caloulate the sep direcuon and lengin |
LI -

L Calculate the next guess for the comperustor |

Subilizing
compensaor?

Reduce the
siep size

I the Hessuan 15 not posiuve
definise notify the user

1

COMPINSaIor Matnces
A. §.C.and Ditound

Fig. ) m«m«mmn.

s emd & e = dhas are b .

ol - P -



Table | Sampling/ update

rates for TLA
T Sample/update rate, s
8 0.225
) 0.028128
T 0.225
T 0.028125

the compensator parameters. Calculation of the gradient
Parameters: Mass Length expression for Yang's problem involves diagonalization of
Ly 1.235kg 0965m the closed-loop system and evaluation of several matrix equa.
L, 0163kg 0167m tions with nested summations. Compare Egs. (32-34) with
Egs. (112-115) in Ref. 3 (0 see the difference in the complexity

Inputs: Torque Tyand T, of the two gradient expressions.

Outputs: 8 and § .
Fig. 4 Planar two-link robot arm. Two-Link Robot Arm Example
We used a mathematical model of a planar two-link robot
arm (TLA) to demonstrate the capabilities of our aigorithm.
8,,, f h 5 This is the same model used by Yang,® and so we were able 10
0 SP‘ Compensator | T, TwoLink Amn | ¢ verify our results by direct comparison. A diagram of the TLA
ref —1—o is shown in Fig. 4.

* The goal of our design was to control the tip position é of
the arm via a multirate compensator. We used the following
analog cost function and process noise covariance matrices
from Ref. 6.

Fig. 5 TLA plant/compensator configuration. 021 0 0 o !
_ 0 0 0 o '
lab.'* We chose a gradient-type search to solve Eqgs. (32-34) J= ,h_"-‘E xT 0 0 185 of x
because it allows us 1o easily add constraints on the pararheters ’ )
values—simple equality constraints were used to find the opti- 0 0 o OJ
mized compensators in the next section. The equations neces- L
sary to solve for the Lagrange multipliers are located in the
Appendix, Eqs. (A3) and (A4). To ensure that the solution 1
represents a minimum J, the algorithm checks that the Hessian 0.01 0 |
of J with respect to the free parameters in B is positive definite ’[ } up (38)
at the solution point. 0 0.69444 !
Because Eqs. (32-34) are not valid when the closed-loop i
system is unstable, the algorithm 1) must be provided with an J
initial stabilizing compensator, and 2) must result in a stabiliz-
INg compensator at every iteration. From our experience, find- where
ing an initial stabilizing compensator is generally not a prob- N
lem. Many systems suitable for multirate control can be 4
stabilized using successive loop closure with minimal cross [’} T
coupling between the control loops. A stabilizing mulitirate X = R u= { '}
* compensator can then be obtained by discretizing the individ- 6 L§!

ual continuous control loops at the desired sampling rates. [5 J

When there are no constraints on Its structure, a stabilizing <

compensator can also be obtained using the boot strapping

method of Boussard.'* For difficult multirate control prob- 0.69444 ¢

lems. where a stabilizing compensator cannot be found using Efww’| = [ } (9)

cither of the preceeding two methods, one can always use 0 0.01
Yang's aigorithm to find a stabilizing compensator and then We assumed perfect measurement and that plant distur-
switch to our algorithm to complete the optimization. In our bances enter the system coincident witt. the control torques.
experience, Yang’s algorithm usually converges to a stabilizing The sampling /update rates are given in Table |
solution quickly—it is the OPtimization of the compensator Five difference compensators were designed: an analog
parameters that 1s time consumm;.. . . LQR, a multirate lead/lead. an optimized multirate lead/lead,
To avoid the problem of destabilizing compensators during an optimized multirate general second order, and an optimized
lhe, \eration process, we included a ch"k in the algorithm single-rate general second order. We used a smooth step input
which systematicaliy reduces the step size to ensure that the 10 &,¢¢ and B¢ defined as foliows:
sompensator is stabilizing. Because the gradient of the cost el ref '
function with respect to the compensator parameters becomes .
very large near the stability boundary, the algorithm is always f 4]
forced away from a destabilizing solution as long as it never bl ) = 0'005[ I- cos(-:)]m. (5T
steps over the stability boundary into an unstable region. ref(
Even though our algorithm was programmed as an inter- 0.001 m, 127,
preted Matiab M-File we found that it still performed better
"han Yang's algorithm which runs as compiled Fortran. The A (40)
srimarv difference between the two algonithms is in the com. Oodt) = D) T.=0.128 ¢ {
plexity of the expression tor the gradient of J with respect to " Li+Ly' ¢
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and the servo conﬁgqraxicn shown in Fig. $ to measure the
performance of the different compensators. The response of
the TLA for the five compensators is shown in Figs. 6a-6c.

Cineeel The muitirate lead/lead was foun

those we obtained using LQR transformed 10 discrete time.
This compensator consists of two simple lead loops: one from
b to T, operating at the fast sampling/update rate, and one
from8to T, operating at the slow sampling/update rate.
The final three compensators were synthesized using our
TN u:‘mm by Suce. Loop Cls. new aigorithm and the cost-weighting matrices used to design

*+ Opumized Mukwate the anaiog LQR compensator. The optimized multirate lead/
- == Opumized Muluraie Gen. 2 Order lead was found by optimizing the pole/zero locations and
=+~ Opumized Single Rate Gen. 2 Order gains of the lead/lead compensator found by successive loop
closures.
1 The optimized multirate general second-order compeisator
Time (Seconds) uses the same sampiing/update scheme as the lead/lead com-
pensators but has the compensator structure of Eq. (41), where
Fig. 6a  Tip & response 10 & smooth siep command to tip position. a,.b,.,c,,andd, are the parameters which were optimized.
. This compensator has the maximum number of independent
05 T free parameters possible for a second-order system.’
+ + == LQR Analog
.- ) : . a
o2k | "+ Malure LeadfLead by Suce. Loop Cls A:[ " OJ. B={' b.z]
\ - =-- Opumized Mulurate Gen. 24 Order 0 oy ZTI
dy, dlz]
D= 4]
[ dy dy “h

01s | "=+ = Opumized Single Rate Gen. 2 Order
! ) ieimme- C:[fn fl:]
o1l ‘ n
The optimized single-rate seneral second-order compensa-
tor is a single-rate equivalent of the multirate general second-
order compensator. It has the same structure as the multirate
general second-order compensator, Eq. (41), but uses a single
sampling rate. This sampling rate was chosen such that the
. number of computations required to implement either the mul-
' tirate or single-rate compensators during real-time operation
' are the same.
L ’ Our results are the same as those obtained using Yang's
Ve, algorithm. They demonstrate how multirate compensators can
018 provide better performance than single-rate compensators by
o 02 0.4 06 08 ) trading lower bandwidth control of the siow modes for higher
Time (Seconds) bandwidth control of the fast modes. In this example, we were
Fig. 6b Control torque 7, respomse 1o & smooth step command 10 able to reduce the tip response overshoot 40% and the peak
tip position. control torque 25% by using a multirate controller over a
single-rate controller.

Conclusions

In this paper, we have presented a new algorithm for synthe-
sizing reduced-order multirate compensators. It can be used to
design compensators of arbitrary structure and dynamic order,
with independent sampling/update rates for the compensator
inputs, outputs, and states. This algorithm provides the ver-
satility of Yang’s algorithm without the numerical complexi-
ties associated with the finite time cost functior,.

Finally, we do not want to discount Yang's algorithm alto-
gether because, while our algorithm requires an initial stabiliz-
ing compensator, Yang's does not. For those problems where
finding an initial stabilizing compensator is difficult, we can
on always use Yang's aigorithm to find a stabilizing compensator

Amlog and then quickly optimize the compensator parameter values
“ T mm m",,;‘e‘m’ Cls. with our algorithm.
. - == Opumiasd Mul )
0.04 o == Opumzed ?f.'.‘.'b".‘.‘..“o... rq&"au Appendix
, Given a P, which stabilizes the multirate system, we can
calculate the steady-state values of A, where A, is defined by
0 02 04 06 08 1 Eq. (32) rewritten here as Eq. (A)).

Time (Seconds)
0w . MY r
Fig. 6c Conirol torque T; response 10 » smooth siep command to Qi+ MP.H < (MP.H)' + (P,H)' QP H

1y positien. "‘F';A..|F" - A (Al)

‘Tap Posstron & (Mcters)

0.2 04 06 08

00s | )

Inpwt Torque T, (Newton-Mcters)

i
008 L ! -..TJ.J""T

01 L

003

Input | oeque l‘2 (Newuwm Mcters)

ol mame s




~06 MASON AND BERG: MULTIRATE COMPENSATOR SYNTHESIS

fork =1.2,.. . Nwith A, =A,.n.
First simplify Eq. (A1) by defining

Qo M 1
Q3 bd ':‘wr Q; ’ Jk = F‘-H (Az)
where / is an identity matrix. Then Eq. (A1) can be written as
A = J:QJ-’& + FJ, AvarFo (A)

for k = I.Z,....N with Ag =AQ.~.

Equation (A3) represents a periodically time-varying Lya-
punov equauion. We can create an equivalent single-rate sys-
tem by repeated application of Eq. (A3).

A= U0 QUan + Fl AvFa (Ad)
tor k = 1,2,.. ,N with Ae=Agan.
Fao = Fepon-nFopan-nFeson-3 Fue (AS)

j Jion-vFeiwen-n - Fa
Jar = !

! H

| ;

: Ju J
[N

o, o .. 0]
0|

1] Q’ . ’
Q= S

|
ILOOOQ,

(Jutew-iFewen-Fen-s- . Fa |
!
| (AS)

Equation (A4) is a time-invariant Lyapunov equation which
can be solved for A,. Once any A, has been found, the propa-
gation Eq. (A3) can be used to find the remaining A,.
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Auniﬂedlpmhforuﬂyﬁngmmm

performance of multirate systems is presented. The

approach BaWﬂMmﬂhnp«menﬁmMyﬁmﬂnMvﬁhmm
muns.anwin.mwtmmruwhmwmmmma.
mnmnteﬂumrmm“mdmtonwdwhgjhem-kmmmdlhpmm-
siderations in muitirate performance and robustoess analysis.

Introduction

NUMEROUS approaches have been taken to analyze the stabil-
ity and robusmess of multirate systems. Most notable is the
work of Thompson.! Thompson and Dailey.2 Meyer and Burrus.3
and Khargonekar et al.* References i and 2 analyzed the gain and
phase margins of a mulurate system using an approach based on
Kranc vector switch decomposition. Meyer and Burrus stuc.cd the
stability of mulurate systems and their frequency domain responses
by appiying the concept of block processing 10 multirate systems.
Khargonekar et al. analyzed the robustness of periodic compensa-
tors. a super set of multirate compensators, using isomorphisms.

Although these approaches seem quite diverse, fundamentally
they are very similar. These three approaches, along with most mui-
tirate analysis techniques, use a transformation, such as Kranc vec-
tors or block processing, to convert the multirate system into an
equivalent single-rate system which can be analyzed with estab-
lished single-rate techniques. The singie-rate results are then used to
characterize the stability and robustness of the onginal muitirate
system.

In this paper we compile the important multirate analysis results
from Refs. 16 and present them i a unifying state-space formuia-
tion. In addition, we provide some new results that clarify the rela-
tionship beiween a multirate system and its single-rate equivaient.
Finally. we apply ali of these results 10 a practical example: a multi-
rate flutter suppression svstem designed for a model wing.

Summary of Multirate Analysis Tools

In this secuon we summarize some important and useful muiti-
rate robustness analysis resuits. These resuits are applicable to mul-
tirate systems that are linear. causal. finite-dimensional, and whose
sample/update/delay activities are periodic and synchronized to a
common clock.

Resuit 1

A multirate sysiem can be modeled as an equivalent singie-rate
system (ESRS). Modeling a multirate system as an ESRS is funda-
mental (0 muitirate robustess analysis. The ESRS allows one to
manipulate and analyze a multirate system as if it were single rate.
Using the ESRS. single-rate and multirate systems can be combined
In senes or in teedback 10ops just as in classical control.* It has also

been shown that a single-rate/multirate system will be stable when-
ever its ESRS is stable.”
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TheESRSofamultimcsystcmcanbeobwmdbymodding
the multirate system as a periodically time-varying system.* and
transforming the periodically ime-varying system into an ESRS.?
The state-space representation of the ESRS is

am+1.0) = Apxim, 0)+Bgug (m, 0) (la)
Vetm. 0) = Cpxtm. 0) + Deug im. 0 (1b)
where
o  u(m.0) “;
Ye(m 0) = ' y("_"” ug(m,0) = "(""'” I (¢3)
Lv(m.N-—l)_i :_u(m.N-l)J

form=0,1.2,....andn=0,1,2,... N—1.

In these equations, u(m, n) and v(m. n) represent the values of
the input and output. respectively, of the onginal multirate system
at the (mN+n)th sampling instant, The integer N is the ratio of the
least common multiple of all of the multirate system’s sample/
update/delay peniods to their greatest common divisor. The sub-
script £ denotes vectors and matrices stnctly associated with the
ESRS.

A key feature of an ESRS is that s Inpuyoutput vectors are
composite vectors containing the input/output values of the muly;-
rate system at N separate sampling times, Consequently, an ESRS
is always multiple input, muitiple output (MIMO) even if the orig-
inal multirate sysiem is singie input, singie output (SISO). Ancither
key feature is that an ESRS always has a nonzero direct feed
through term D;. This is because D¢ contains information about
how past inputs affect the current output. For systems with no
dynamucs, the direct feed through term Dy is block diagonal. For
cxample. the ESRS of a constant uncertainty mamx 4 is

A¢ = block diag[d. A. . . .. kY] 3

with N blocks.

Refer to Refs. 3. 6. 8. and 9 for the details on modeling a multi-
rate system as an ESRS.

Result 2

A discrete signal wtm. n) 1s related to its ESRS signal we(m, 0)
as follows:

wim, ny={Wynm) Wn-1)... Wdn=N+1)jwgm, 0)

where W.(n) 15 a switching function defined as

1
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~0 that

k= =mN torm=40.1,...

=9 otherwise (4b)

Result 2 provides a convemient mathemaucal connection
between the inpuvoutput vectors of a multirate svstem and its
ESRS. The torm of W, given in Eq. (3a) is useful for analytic
results whereas that given in Eq. (4b) is convenient for numericai
simulation.

Resuit 2 allows one 10 use singie-rate analysis techniques to
obtain resuits for muitirate systems. For exampie, to compute the
time domain response of a multirate system to a generic input, we
can find the time domatin response of the ESRS using any applica-
ble single-rate technique. and then wansform that response back to
the onginal multirate system using result 2.

Resuit 3
The two-norm and rms value of a discrete signal w(m, n) and its
ESRS signal wg(m, 0) are equal or. equivalently,
w(m, mily = twe(m,0)l,  and  rms{w(m, n)] =rms{wg(m. 0)]

Result 3 follows directly from Eq. (2) and the definition of the
two-normm and rms value, ¥ '

Resuit 4

The maximum rms gain of a multirate system is given by the H-
infinity norm of its ESRS transfer function Gg(z) or, equivalently,

ms (y(m.n)] ;
s ————— = |G (2
m-:.?-o rms (u(m. n)] |Ge M.

It is well known that the maximum rms gain of a SISO single-
rate system 1s equivalent to the maxumum gain on that system'’s
Bode piot. Although a transfer function for a multirate system does
not exist in the traditional sense. we can see from result 4 that the
H-infinity norm of a SISO muitirate system plays the same role as
the maximum Bode plot gain of a single-rate system.

Result 4 follows trom result 3 and Refs. 10-12. It is also
Jenved. 1n part. in Ref. 4.

Result §

The singuiar values of a single-rate transter function G(2) and 1ts
ESRS transter function G¢(:) are related as follows:

S(Gele "= a(G(e*)] a(Glen** M7
U(G((’l”""M')]r e G‘G(¢/|00l2ﬂN-llel)lf'T

where a1 denotes a column vector of singular values.

Result S relates the singular values of a single-rate system to the
singuiar values of its ESRS and provides some insight into the sig-
nmificance of the singular values associated with the ESRS of a mul-
urate system. From result S we can see that one etfect of trans-
torming G(2) 1o G(2) is that the singular values of G(:) at high
frequencies are aliased into (7,(2) at lower frequencies. Conse-
quently. the utm. n) in resuit 4 that results in the maximum rms
2ain does not necessanly contain the frequency w associated with
Gele*™" (T is the samping penod of the ESRS). The input sig-
nal of maximum rms gain must be constructed using the nght sin-
gular vectors of G(:) and result 2. We will demonstrate this proce-
ure 1n the tollowing secuion. 1Sce the Appendix for a derivation ot
resuit S.)

Resuit ¢

The stability. gain margin. and phase margin of a SISO multirate
I caid be determined directiy from a Nyquist plot of iws ESRS.
Recall trom resuit | that the ESRS ot a SISO muiurate svsiem 1s
MIMO. lheretore. the muitiloop vyquist stadility critenon must

be used in resuit 6." This. however. 1s one case where gain and
phase margins iaken from a muitiloop Nyquist piot can be inter-
preted in the traditional sense because gain and phase vaniations at
the muitirate system's input/outpu apply simultaneously to all the
inputs/outputs of the ESRS.

Result 6 follows from Eq. (3) and is derived in Ref. 1.

Resuit 7

The robustness of a multirate system can be determined by
applying structured and unstructured singuiar vaiue analysis to that
system’s ESRS. Given the ESRS transfer function G, of the nomi-
nal system and the uncertainty transfer function A, we can apply
established singular value analysis techniques to find the size of
the smallest uncertainty & (A;) that destabilizes the closed-loop
system in Fig. |. This result, however, is only a coaservative esti-
mate of the size of the actual smallest destabilizing uncertainty A.
The input/output vectors of an ESRS are composite vectors, con-
taining the input/output values of the multirate sysiem st N sample
times. Thus & (A,) found using unstructured singular value analy-
shmmfumﬁydwﬁcﬁﬁmuMmﬂym
chndwimunmmndﬁnguluvummdnfuw
and noncausal perturbations. A valid perwrbstion foc a given
@ (A,) might, for example, include block diagonal elemenss in A,
that are unequal. This corresponds 0 a time-varying pertarbation
because the gain between u(m, n) and y(m, a) variex with a.
Another valid perturbation couid include nonzero upper block
diagonal clements in A,. This corresponds to a noncausal perturbe-
tion because a future input u(m, n+1) can affect the current output
y(m, n).

For the ESRS uncertainty A to represent the actual uncertainty
4, its structure must obey Eq. (1). Finding & (Ag) subject o Eq.
(1) requires the solution of a structured singular value problem.
Unfortunazely, even simply structured dy~amic uncertainties in a
single-rate/multirate system transform o uncertainties with com-
plex structures in the ESRS. The compiex structure makes it diffi-
cuit 1o obtain a good estimate of the size of the smallest destabiliz-
ing stuctured perturbation. However, when the single-rase/
multirate uncerainty is a constant. as is the case for many prob-
lems, the ESRS uncertainty is also a constant with a repeased block
diagonal form {see Eq. (3)). A good estmate of the solution of
such a structured singular value problem with repeated blocks can
be found using one of the methods in Refs. 14-17.

Result 7 follows directly from the fact that a single-rate/muiti-
rate svstem 1s stable if and only if its ESRS is stable.’

Application

In this secuon we apply the results of the previous section o a
real world example: a2 muitirate flutter suppression syssem for a
model wing. This application points out some of the practicalities
of muitirate robustness analysis.

The modei wing used in this example is being developed under
the Benchmark Active Controis Project at the NASA Langley
Research Center. It consists of a ngid airfoil mounted on a pitch
and plunge apparatus (PAPA). The PAPA mount provides the two
degrees of freedom needed to model classical wing fluter. The
wing has one control surface located on the trailing edge (TE) of
the airfoil. Two accelerometers measure pitch and plunge accelera-
uons. We used a |5th-order mathematical model of the wing for
the control system design. This model incorporates a second-order
Dryden gust nlter. a third-order actuator model, and a |Oth-order

]
— A
R
. Ge(2) !

Fig. 1 SRS Ggi2) with (actored uncertainty dgiz)
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airfoil model (two rigid body modes and six unsteady aero states).
A block diagram of this model is shown in Fig. 2.

A second-order multirate flutter suppression system was
designed for the model wing. The muitirate compensator, shown in
Fig. 3, consists of two first-order control loops. The slow loop is
sampled/updated at 50 Hz. The fast loop is sampled/updated at 200
Hz, resulting in N = 4. We optimized all of the free parameters in
this compensator using the multirate compensator synthesis algo-
rithm described in Ref. 9. The free parameters were the pole and
zero locations for the fast and slow loops, the gain values for the
fast and slow loops, and gain values for the cross feed between the
fast and slow loops.

To analyze the robustness of the closed-loop system we exam-
ined the gain and phase margins at the plant input and output and
the rms gains from disturbance input to the control surface deflec-
tion and deflection rate. Gain and phase margins provide a measure
ofﬂnmuimynllwedintheplunnndel."hemnimpm-
vide a measure of the aliowable disturbance level before the con-
ol surface actuator limits are exceeded.

Traditional gain and phase margins at the plant input were cal-
cuhnedusingmulw.mloaﬁmofdnwm;mplex
loop gain £, is shown in Fig. 4. The multiloop Nyquist diagram for
the open-loop ESRS is shown in Fig. 5. Gain and phase margins
caiculated from the Nyquist diagram are given in Table 1.

Generalized gain and phase margins at the plant sstput were cal-
culated using the ESRS and the structured singular value. For this
analysis, the closed-loop system was cast into the form of the
block diagram shown in Fig. 1. The uncenainty block A and the
corresponding A, are

. ;}, 0l
O &y

where /y is an N X N identity matrix. The compiex gain uncenain-
wk.m&wmwmm.ﬂny
are shown in Fig. 4. G, (in Fig. 1) is the nominal ciosed-loop sys-
tem comonsed of the model wing and the multirate flutter suppres.-
slon system.

A . vk, 0 $)

N LO 1)

Y v
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The form of the unceruunty A, in Eq. (5) leads directly t0 a
structured singuiar vaiue problem with repeated scalar block
uncertainties. Typically, an exact solution for such a problem is
difficult to find. Fortunately, this problemn has only two free param-
cters, &, and k. and an exact solution can be found. We caiculated
an exact value of the size of the smallest destabilizing uncertainty
using the following equation'*:

1
o(A,,)

= SUp  max p{U(8)G,(e™) (©6)

0<o<x Och<2x

with

where G (A,,,) is the maximum singular value of the smallest
destabilizing 4; and p(-) is the spectral radius. The resulting value
of & (A is given in Table 1.
Genenalized gain and phase margins ing 10 &(A,,)
were calculated usiig the method described in Ref. 18. Figure 6
shows the “region of guaranteed stability” for simultaneous (inde-
pmdan)g:inmdphuechlngamlﬂ,mdnh,.

S1e cmo

Model Wing a

Wille
Ek2 |

v

Fig. 4 Location of the complex guins weed for gain and phase margia
analysis; nominel system: k, =1, k;=k;=0.

—E—— Compensator
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Fig.5 Muitiloop Nyquist plot of PAPA wing with muitirsts
tor; the contrel loop is broken at &, with &,=4,=0; epen-leep symem
has twe uastable poles.
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Table | Robustness resuits for multirate flutter suppression system

{33 margin at plant input (with &, =k,=0), dB [~12. +10)
Phase margwn at plant input (with &, =k,=0), deg =65
FtAp 0 Withk, =) 0.74
Maximum rms gain. v to Syg. deg-s/in. 0.128
Maximum rms gain, v 10 Sy, deg/in. 4.67

The maximum rms gain values for disturbance input to control
surface deflection and deflection rate were caiculated using
result 4. Result 4. however, is directly applicable only to discrete
systems and not to our mixed continuous/discrete system. There-

plots of this new muitirate system (see Fig. 7). The peak values,
which occur at w,,, =27 rad/s, are given in Table 1. Since we
a.ssumedasxairstepdismmxeinput.mcvaluumhblel are
lower, yet very close. bounds on the maximum rms gains. '

Contrary to what occurs in linear time invariant single-rate sys-
lems. we cannot assume that the signal producing the maximum
TMS AN Urgy nry(/, 1) has the simple form S W, Tm). Instead,
WE MUSL CONSITUCT Uy, (M. 1) using resuit 2. For our example,
the input signal of maximum rms gRIN &, _(m, n) from the dis-
turbance v to the control surface deflection 8y was found as fol-
lows. Let

Gg(e*masT)=transfer function from v to [ -
evaluated at w,,, (T2)
and

- o
’
!

i)
a:e 2 .'

oyt
ave v

=night singular vector associated with o (G g(e/*mas? N by

Then. upy, alm. n) i given by

Uras e (M.A) = (W (m)W, (n -~ ... Wy(n=-N+ 1)

asin(ow,, Tm+o,) i
t

x | sin(e  Tm+e,) |

asmmiw__Tm+o
v nax v

)
- 4 (8)

where W is the switching function descnbed inresult 2, and T is
the sampling penod of the ESRS.

From Eqs. (4) and (8) it is straightforward to see that. in general,
the signal of maximum rms gan for a mulurate system is com-
prised of the sum of sinusosds of several distinct frequencies. (n
this example. though., Umes ma(M. 1) is compnised almost purely of &
vingle sinuso.d of frequency of 27 rad/s. This is because higher fre.
Juency signals which rmight interact with the muitirate compensa-
"OF and increase the rms gain are attenuated bv the Drvden niter
S plant dy namics

92s
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$ 0124 -
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In this paper we have summarized some important muitirate
mmnnmmfmmonfummum
equivalent single-rate system. This system allows one to analyze
ﬂlembﬂityandmhmofnmulumesymmwn-
known single-rate techniques.

There are. however, drawbacks to using the equivalent singie-

mmbmmu.nmuydimm:m»m
hdmmnlﬁrnwsymnmhiﬁtyandmhmmm

on the equivalent single-rate system is straightforward because the

analysis can be performed using established single-rate techniques,

oG (e = (a[G(eM) T(Glet*> 2mmy 7
O[G(dl"“llﬂ)]r. .. U(G(e’""“""*ww,]rlr

Proof:  Let G(2) and G(z") be the transfer functions of a sin-
gle-rate system and its ESRS, respectively, such that
YD =Gz  and  yy(2M) = G (AD)
Wehavewrinmc,(:“)u:ﬁlmtionof:”beamﬂuww
period for the ESRS is N times that of the single-rate system asso-
ciated with G(z).
It is shown in Ref. 3 that
SO L U A A A E7T A (A2)
where / is an 1dentity matnx of appropnate dimensions.
Now define

y(9'2) u(9's) i
Sz = vien Q= WD (a3
, v i ' v ' '
Yo', u(e' ')
and
(Gt2)=block diag{Gld”:). G s, . .. G 'l Al
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where
(b___e‘lmlM
such that
F=G () (AS)

We can now write ¥(:) and @(z) in terms of V(=) and ug(z")
using Eq. (A2).

=Ty (Y =T =") (A6)
where
! :-ll :”N-hl
A ) T IN-D
Tin=1 (021 (02) ! (A

O R BTN ]
Then from Egs. (A1) and (AS) through (A6)
- GM=T"'GaiT (A8)

_ Noticing that T(e")T(e*)*=NI. we can define a unitary matrix
T(&*) such that

T(e®y=\NT(¢*  and (e ' =1 /MT (e (A9)

Now. using Egs. (A8) and (A9) and the properues of unitary
matnces, it is straightforward to show that

o(G(e™)] =a(G (™)) (A10)

Since G is block diagonal [see Eq. (Ad)], and the singuiar values
of a block diagonal matrix are the union of the singular values of
cach block. we can rewrite Eq. (A 10) as follows:

olGHe™ )= {a(G(e™))T a[G(e'®+2mmiyT

o(G(c’""‘"’"")]r- .. 0[6(0"."1‘"""”””)]’]7
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ABSTRACT

A new methodology for muitirate control system desiga is described. It
accommodates a general multiple-input multiple-output control law structure that allows
the sampling rates for the plant sensor output signals, the update rates for the processor
states, and the update rates for the plant control input signals to be independently
specified. It includes a capability to design for multiple plant conditions so as to achieve
robustness to plant parameter variations. Its analysis components include a method for
determining conventional gain and phase margins, a method for determining a bound on
the smallest destabilizing uncertainty, and a method for determining the maximum RMS
gain of a multirate system. The methodology is demonstrated by application to the
design of a multirate flutter suppression system for a model wing.

INTRODUCTION

Multirate control systems occur frequently in engineering practice. They have
received comparatively little attention in the technical literature. There are several
reasons for this. One is a lack of recognition by the research community of the practical
motivations for multirate controllers. Compared to single-rate controllers, they offer the
relatively obvious real-time computing efficiencies in multi-loop, multi-function, multi-
time-scale systems. But with real-time computing hardware costs as low as they are, such
efficiencies usually do not justify the additional complexity of a multirate design.

Assistant Professor
Associate Professor, Member AIAA
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In practice, multirate controllers are often necessitated by hardware constraints. For
example, when a sensor provides a signal that is updated only at a fixed interval, except
when the update period happens to be a suitable sampling period for a single-rate
controller, a multirate controller must be used.

The logistical burden that a multriate system presents is a second reason for the lack
of attention given to multirate control systems. This burden is a consequence of the fact
that a multirate system is time-varying from one sampling instant to the next.
Fortunately, a well designed software package can spare the designer from most of the
burden of the logistical difficulties, thereby allowing him or her to concentrate on the
more fundamental design issues.

This paper describes a multirate control system design methodology for which we
have developed such a software package. The methodology was originally proposed in
Reference 1. It employs the control law synthesis algorithm described in Reference 2,
and the modeling and analysis tools described in References 3 and 4. The description is
via an application to the design of a multirate flutter suppression system for a model
wing.

The remainder of the paper is divided into four sections. The first describes the
model wing, its open-loop characteristics, and the flutter suppression system design
goals. The second describes the design methodology and its application to the flutter
suppression system design. The third presents the results of the flutter suppression
system design. Conclusions are given the final section.

PROBLEM DESCRIPTION

The BACT Wing

The Benchmark Active Coritrols Technology (BACT) Wing is being developed at the
NASA Langley Research Center to study the modeling, prediction, and control of
aerodynamic flutter. It consists of a rigid airfoil mounted on a flexible base. The base,
called the Pitch and Plunge Apparatus (PAPA), provides the two degrees of freedom
necessary to model classical wing flutter. The airfoil has one control surface (CS) located
on the trailing edge. Two accelerometers, one near the leading edge (LE) and one near
the trailing edge (TE) measure the airfoil’s motion. References 5-6 describe the BACT
Wing in detail.

The flutter suppression system was designed using 16% order linear state models of
the BACT Wing developed by NASA Langley's Structural Dynamics Division. Each
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model consists of 4 rigid body states corresponding tu the pitch and plunge modes,
6 unsteady aerodynamic states, a second order actuator model, a second order Dryden
filter, and two first order anti-aliasing filters. Figure 1 shows a block diagram of this
structure. NASA provided us with 24 such models, each describing the dynamics of the
wing in Freon at a different operating point. The operating points include dynamic
pressures above and below the critical flutter pressure at three different mach numbers.
See Table 1 for a summary of the operating points.

Table 1. Operating points for BACT Wing. All operating points assume Freon medium

Dynamic Pressure (psf)
(Unstable operating points are in gray)
Mach0.50 75* 100 122 132 150 175 200 225+
Mach 0.70 75 100 125* 136 146 175 200 225
Mc .78 5"I 7 100 125 4 lSl i 175 _ 2

* Operating poin used for compensator sis
Open-Loop Characteristics of the BACT Wing

Two modes - pitch and plunge - dominate the open-loop dynamics of the BACT
Wing model. For example, the poles and zeros of the CS command to the LE and TE
accelerometer output transfer functions at mach 0.5 and 75 psf are shown in Figures 2(a)
and 2(b). As dynamic pressure increases, one pair of these poles moves toward the right
half plane and crosses the imaginary axis at the stability boundary. Figure 3 shows this

pole movement. The corresponding movements of the open-loop poles not shown in
Figure 3 are relatively small.

The dominant pitch and plunge modes are observable at all operating points with
either the TE or the LE accelerometer outputs, and are controllable at all operating points
using the CS command input. The zeros of the CS command to TE accelerometer and the
CS command to LE accelerometer transfer functions are shown in Figure 2 for the mach
0.5 and 75 psf operating point. As dynamic pressure increases, the non-minimum phase
zeros associated with the TE accelerometer migrate into the left half plane. The
minimum phase zeros, associated with the LE accelerometer and located near the
dominant poles. migrate into the right half plane. See Figure 3.

At low dynamic pressures the transfer functions from the CS command input to the
TE and LE accelerometer outputs are non-minimum phase. Non-minimum phase
systems are more difficult to control than minimum phase systems’. An alternative
output is one which measures the difference between the two accelerometer signals. This
new output is essentwlly pitch acceleration. The CS command to pitch acceleration



Mason & Berg Multirate Flutter Suppression System Design for a Model Wing 4

transfer function is minimum phase for all operating points, and the BACT Wing is
relatively easy to control using this new output. We chose not to use this output directty
in our designs, however, because it does not ad:quately account for the inevitable
uncertainty in the TE and LE acceleration measurements.

Design Objectives

Our primary objective was to design a multirate flutter suppression system that will
stabilize the BACT Wing when it is flown (at some future date) in the wind tunnel at
speeds between mach 0.5 and 0.78 and dynamic pressures between 75 psf and 225 psf. In

addition, the following constraints, most of which are functions of the hardware that will
be used to implement the control law, were specified by NASA.

Control Activity Constraint: For unity RMS white noise input disturbance (1 in/sec
RMS), the steady state covariance of the CS deflection must not exceed 0.0625

deg? (0.25 deg RMS), and the CS deflection rate must not exceed 65 deg2/sec?
(8.0 deg/sec RMS).

Sampling Rate Restrictions: The minimum sampling period is 0.005 sec. For
multirate sampling, all sampling periods must be multiples of 0.005 sec.

Computational Delay: All Ccompensators must account for a minimum 0.005 sec
computational delay.

Robustness Constraints: The gain and phase margins at the compensator output,
which is a scalar signal, must be at least +6db and $45°. The maximum singular
value of the smallest destabilizing multiplicative uncertainty at the compensator
input must be 0.75, which corresponds to simultaneous gain and phase margins at
the two sensor inputs to the compensator of +6db and +45° 8,

Finally, our multirate control law was to provide the same performance and stability

robustness as a comparable single-rate controller yet require less hardware to implement.

THE DESIGN METHODOLOGY

We designed two flutter suppression systems for the BACT Wing: a single-rate
system, for use as a baseline for comparison, and a multirate system. Each was designed
using the methodology in Reference 1. This methodology defines a general approach and
provides the specific tools needed to solve a design problem. The methodology has three
parts: modeling the multirate system. optimizing the digital processor gains, and
analyzing the performance and robustness of the closed-loop system. In the following

paragraphs we describe the methodology and its application to the design of the two
flutter suppression systems.
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Modeling the Flutter Suppression System

A block diagram of a generic flutter suppression system is shown in Figure 1. In this
system, each sampler at the plant output can operate at an independent rate, the digital
processor can update each processor state at an independent rate, and each zerc-order-
hold at the compensator output can operate at an independent rate. This compensator
model has the form of the Generalized Multirate Control Law Structure (GMCLS)
discussed in References |, 3 and 4. The GMCLS provides a framework for modeling
multirate compensators and eliminates much of the bookkeeping involved with multiple
sample/update rates and/or time delays. Using the GMCLS, it is straightforward to
represent a multirate system as a periodically time-varying single-rate system. Later we
will see that the resulting periodically time-varying system can be further transformed
into a time invariant system by “lifting”9 or “block processing” 10,

There are two components to the GMCLS: the “sampling schedule” and the “digital
processor gains”. The “sampling schedule” indicates the sequence of sample and update
activities for all samplers, processor states, and zero-order-holds. In the GMCLS, all
sample and update activities must occur at integer multiples of a specified time period T;
and the sampling schedule must repeat itself every NT, where N is an integer. Often T
and N are functions of the hardware used to implement the control law. The second
component of the GMCLS is the “digital processor gains” A;, B;, C,, and D,. These gains
determine the dynamics of the digital processor and are typically free design parameters.

We modeled both the single-rate and the multirate flutter suppression systems using
the framework of the GMCLS. Both compensators have the form of the generic
compensator shown in Figure 1, with two inputs, TE and LE accelerations. one output,
CS command, and second order digital processor dynamics.

The single-rate compensator has a sample/update rate of 50 Hz, which is

approximately 10 times the frequency of the doininant pitch and plunge modes. The state
space structure of the compensator’s digital processor is

Xn+)) [0 1] x(n) + 0 b |[TE Accel(n) (1a)
X (n+1)f " ay a3 [|x3(m)[ 7|1 by [|LE Accel(n)
_ xy(n)
CScmd(n)—[cl () X)) (1b)

where x| and x2 are the digital processor states: TE Accel and LE Accel are the
acceleration inputs from the A/D converters; and CS cmd is the command output to the
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zero-order-hold. ;. b;, and ¢; are the free gains to be optimized. The structure of (1)
represents a minimal realization of a second order compensator3,

The GMCLS sampling schedule corresponding to the single-rate compensator is
shown in Figure 4. In this figure, circles on each time line indicate when a particular
sample or update activity occurs. The GMCLS “digital processor gains” correspond to
the matrix elements in the digital processor’s state space description given in (1).

The multirate compensator was designed to provide the same performance and
stability robustness as the single-rate compensator using a reduced number of analog-to-
digital converters. In the multirate compensator. the digital processor states and CS
output are updated at 50 Hz, while the accelerometers are sampled at 25 Hz. In addition,
there is a 0.02 second delay between the sampling of the TE accelerometer output and the
LE accelerometer output. Consequently, the multirate compensator requires only one
A/D converter to sample both accelerometer outputs.

To maximize the benefits of its multiplexed sampling schedule. the muitirate
compensator uses periodically time-varying digital processor gains. One set of gains is
used when sampling the TE acceleromete: output and another set is used when sampling

the LE accelerometer output. The state space structure of the multirate compensator’s
digital processor is thus

x(n+)) [ O 1 xy(n) + 0 by(n)]{TE Accel(n) 2a)

x(+Df " ai(n) ay(n) || xo(m)[ 7] 1 by(n) ||LE Accel(n) (ca

. CScmd(n):[c (n) ¢c5(n) x(n) (2b)
1 2 Xz(n)

where x; and x; are the digital processor states: TE Accel and LE Accel are the
acceleration inputs from the A/D converters; and CSemd is the command output to the
zero-order-hold. a;(n), b;(n), and c¢i(n) are the free gains to be optimized. These gains are
functions of n and are periodically time varying, e.g., aj(n) = a;j(n+2).

The sampling schedule for the multirate compensator is shown in Figure 5. Notice
the multiplexed sampling scheme of the two A/D converters. The GMCLS “digital
processor gains” correspond to the matrix elements in the digital processor’s state space
description given in (2), just as in the single-rate case.

Optimizing the Digital Processor Gains

To determine the values of the digital processor gains for the two compensators, we
used the low order multirate compensator synthesis algorithm described in Reference. 2.
along with the multiple plant conditions idea of Ly!1-12. The synthesis algorithm uses
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numerical optimization to determine values of the digital processor gains that minimize a
quadratic cost function. The multiple plant conditions idea employs a cost function
which is the sum of the costs associated with a single compensator in feedback with a
nominal plant and perturbed variations of that plant. The digital processor gains that
minimize this new cost function are robust in that they stabilize the nominal plant and the
specified variations of that plant.

The multiple plant conditions cost function has the form

/4 x; (t M;|(x; (¢t
=1 ] l i
',m —t!g?og Ej{“z (t) 1WT ]{u, (t) €)

where E is the expected value operator; the integer Nj is the number of simultaneous
plant perturbations under consideration; the vectors x; and u; represent the plant states and
control inputs, respectively, of the irh plant condition: and Q;, M, and R; are the
weighting matrices associated with the ith plant condition, and are free parameters
selected by the designer.

Using the synthesis algorithm in Reference 2 and the cost function in Eqn. (3), we
found values of the digital processor gains for the single-rate and multriate flutter
suppression systems that stabilized the BACT Wing at all 24 operating points. Instead of
optimizing over all 24 operating points, however, we selected six representative ones. -
The six are indicated in Table 1. ‘

For each of the six operating points, we selected a unique set of weights, Q;, M;, and
R;, for the cost function in (3). To select Q;, M;, and R; we used that fact that the gains
which minimize (3) corresponds to the LQ regulator feedback gains when the
compensator is a continuous time design, the plant outputs are the values of the plant
states, and the compensator is strictly a feedback gain. Accordingly, we first designed a
continuous L.Q regulator, one for each of the six operating points, that satisfied NASA’s
performance criterion. The weights were chosen so that the closed-loop damping of the
pitch and plunge modes was greater than 0.07, and the RMS control surface activity
constraints specified by NASA were satisfied. (For ccmparison, the damping in the
open-loop BACT Wing at a stable dynamic pressure of 75 psf is approximately 0.025.)
Next, we uniformly scaled Q;, M;, and R; to obtain a unity LQ cost for each operating
point for a 6 inch/sec RMS white noise disturbance input . Finally, we used the values of
Qi, M;, and R; from each LQ regulator design for the corresponding values in (3).
Optimum values of the digital processor gains were found by minimizing the cost
function (3) using the synthesis algorithm in Reference 2.
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After optimization, we evaluated each compensator’s performance and robustness
using the methods discussed in the next section. One of the robustness measures we
considered was the maximum singular value of the minimum destabilizing multiplicative
uncertainty at the compensator inputs (a structured singular value). The size of the
structured singular value for our initial designs was unacceptably small. It was less than
0.20 a1 some operating points, whereas NASA had specified a value of 0.75. To remedy
this we added fictitious sensor noise and reoptimized the processor gains (our initial
designs assumed no sensor noise). Our addition of fictitious sensor noise was motivated
by the Loop Transfer Recover technique for LQG systems design!3.

Analyzing the Flutter Suppression Systems

Recall that we modeled the flutter suppression systems using the GMCLS. It is easy
to represent a compensator having the GMCLS as a periodically time-varying single-rate
system. Furthermore, it is straightforward to transform a single-rate periodically time-
varying system into a single-rate time-invariant system using “lifting” or “block
processing”. We refer to the resulting single-rate time-invariant system as the Equivalent

Single-Rate System (ESRS). See References 1 or 4 for a discussion of the properties of
the ESRS.

An ESRS has the following form

x(k+N)=Agpx(k)+ Brug(k) (4a)
yE(k)=CEx(k)+DEuE(k) (4b)
where
k) u(k)
sedo=) TV Y and ugrg=y kD (40)
yk+N-1) utk+N~1)

and where x(k) are the states of the discrete cystem, w(k) are the discrete inputs, and Wk)

are the sampled outputs. The subscript E denotes vectors and matrices strictly associated
with the ESRS.

A key feature of an ESRS is that its input/output vectors are composite vectors
containing the input/output values of the original system at N sample times.
Consequently, an ESRS is always MIMO even if the original system is SISO. Another
feature is that an ESRS always has a nonzero digect feed through term. When the original
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system has no dynamics, the direct feed through term of its ESRS, D, is block diagonal.
For example, the ESRS of a constant matrix A is

Afg = Block Diag[ A, A, ..., A] with N blocks (5)

The ESRS allows one to manipulate and analyze single-rate and multirate systems as
if they were both single-rate. ESRS state space or corresponding transfer function
descriptions can be used to calculate input-output relations for systems in series or in
feedback loops just as in classical control!4. For example. to calculate the ESRS of a
time-invariant plant in feedback with a multirate compensator, we would calculate the
ESRS of the plant and compensator individually, using the same value of T and N for
both, and then combine them using block diagram algebra. Furthermore, we could
determine the stability of the original closed-loop system by calculating the eigenvalues
of the new closed-loop ESRS system I5.

We used the ESRS to evaluate the performance and robustness of our multirate and
single-rate tlutter suppression systems. First. we formed their closed-loop ESRS’s. and
then we applied analysis techniques for linear time-invariant systems to the resulting
single-rate systems. In the following section, we discuss the results of these analyses.

DESIGN RESULTS
By way of review, our two flutter suppression systems are:

1) Single-Rate Second-Order with TE and LE acceleration inputs and CS command
output

2) Muliirate Second-Order with multiplexed TE and LE acceleration inputs and CS
command output

We compared the performance and robustness of these two compensators in the
following areas

1) Gust pulse response

2) Maximum RMS gain from disturbance to the control surface deflection and
deflection rate

3) Gain and phase margins at the compensator output

4 The maximum singular vaiue >f the minimum destabilizing mu'tiplicative
uncertainty at the compensator input
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The results are presented for three operating points, mach 0.50 132 psf, mach 0.70
146 psf, and mach 0.78 151 psf. Each of these is 5 psf above the critical flutter dynamic
pressure for the corresponding mach number, so the BACT Wing is nominally unstable at
each of these operating points. It is important to note that none of these operating points
were used for the compensator optimization and so the compensators were not tuned to
these particular operating points. Although we will discuss performance and robustness
at only three operating points, the following results are indicative of the compensator’s
performance and robustness at all 24 operating points.

Gust Pulse Response

The gust pulse response provides an indication of the transient response of the closed-
loop system to a disturbance input. We computed the gust pulse response by simulating
the response of the BACT Wing in feedback with the flutter suppression system to a
disturbance input pulse with an amplitude of 10 in/sec and a duration of 0.004 seconds.

Figures 6-7 show the response of the BACT Wing at mach 0.70 and 146 psf to the
specified disturbance gust pulse. Also shown is the response of the wing with a
continuous LQ regulator. The cost function weights for this LQ regulator design satisfy
the same design criterion as were used in the multirate and single-rate designs. The gust
pulse responses at the other operating points are similar to those shown in Figures 6-7.

For comparison, gust pulse response plots for the multirate compensator synthesized
without fictitious sensor noise are also shown in Figures 6-7. Recall that we added
fictitious sensor noise to the multirate design in order to improve the robustness at the
compensator input. The primary effect of adding sensor noise is to decrease the damping
of the pitch and plunge modes. As can be seen, the reduction in damping is more
prevalent in the pitch response than in the plunge response.

Max RMS Gains

One of NASA'’s specifications was a limit on the steady state covariance of the
control surface deflection and deflection rate for a 1 in/sec RMS white noise disturbance.
Our closed-loop system consists of a continuous plant and a discrete compensator.
Therefore, these steady state covariances are periodically time varying. In Figure 8, we
show the steady state covariance propagation for the BACT Wing in feedback with the
two compensators at an operating point of mach 0.70 and 146 psf for a unity RMS white
noise disturbance.

One meaningful interpretation of NASA's specification would be to look at the peak
steady state covariance value taken from the covariance plot. This value, though, is an
upper limit on the closed-loop gain for a white noise disturbance and is not a true

et e -
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indicator of the control activity level. A better measure of control activity would be the
maximum RMS gain.

The maximum RMS gain of a multirate system is given by

su RMS(Y(/C))= su RMS(yg(k)) Gk ZN)L, 6)
RMS(uy#0 RMS(u(k))  RMS(u 10 RMS(ug (k)
where HGg(zV)ll., is the H-infinity norm of the transfer function of the ESRS system
between the input and output of interest, u and y respectively. See References 1 and 4 for
details.

To apply the discrete equation (6) to our mixed continuous/discrete system, we
created a new discrete multirate system in which the continuous inputs and outputs of
interest are sampled very fast. We chose a sampling rate for the CS deflection and
deflection rate of 500 Hz. This is more than ten times the control surface actuator roll-off
frequency. Figure 9 shows a block diagram and sampling schedule of this new discrete
time system in feedback with the single-rate compensator. This closed-loop system is
multirate even though the compensator is single-rate. The ESRS for the system has a
sample/update rate of 500 Hz and an N of 10,

We used this new ESRS system to estimate the maximum RMS gain of the original
single-rate system between the disturbance and the CS deflection and deflection rate. A
similar method was used to calculate the maximum RMS gains for the disturbance input
to the CS deflection and deflection rate for the multirate flutter ~uppression system. The

results, for the BACT Wing at the three representative operating points, are summarized
in Table 2.

Gain and Phase Margins

Gain and phase margins were calculated at the compensator output using the ESRS
and a multiloop Nyquist diagram. The ESRS of the plant and compensator were
computed independently and then combined in series to form the ESRS loop transfer
function. Gain and phase margins were subsequently measured directly off the multiloop
Nyquist plot of this function. These are traditional gain and phase margins. and assume
that the gain and phase cannot vary simultaneously. The details of this technique are
given in References 4 and 16.

The gain and phase margins for the BACT Wing at three operating points are
presented in Table .. These values are typical of the margins at all 24 operating points,
although the margins tend to be better at lower dynamic pressures and slightly worse at
higher dynamic pressures. A representative Nyquist diagram is shown in Figure 10. This




Mason & Berg Multirate Flutter Suppression System Design for a Model Wing 12

Table 2. Performance and Robustness Summary

P e e

Mach 0.50, 132 psf  Mach 0.70, 146 psf ~ Mach 0.78, 151 psf

Single-rate Multirate __ Single-rate __Multirate Single-rate Multirate

Max RMS Gain

Dicer 10.CS Deflect. 0.22 0.25 0.19 0.19 0.11 0.11
(deg sec/in)
Max RMS Gain
Dy 1 CS Defurate 6.5 6.9 24 2.6 1.5 1.5
(deg/in)
Gain Margin 12 db 12 db 10 db 10 db 9 db 9 db
Phase Margin 41° 38° 45° 40° 43° 40°
a-[kl 0 ] 0.41 045 0.38 0.44 0.35 045
0 ko
SR 0.25 0.35 0.26 0.32 0.25 0.31
0 ks

w/0 sensor noise

“

particular Nyquist plot has two encirclements of the -1 point because the open-loop plant
has two unstable poles.

Robustness at the Compensator Input

The uncertainty at the compensator input was assumed to be a multiplicative
perturbation of the form shown in Figure 11, where k| and k7 are complex gains. We
transformed this system into the output feedback form traditionally used in robustness
analysis using simple block diagram algebra. However, when the compensator is
multirate we must use the ESRS of the plant, compensator and uncertainty. A block
diagram of this closed-loop ESRS for the multirate flutter suppression system is shown in
Figure 12. G is the loop transfer function comprised of the compensator and plant
ESRS transfer functions connected in series.

Now, given the system in the form shown in Figure 12, we can calculate an exact
value for the size of the smallest destabilizing perturbation!”. First rewrite Ag in
Figure 12 as

A= hk) + Dk, (7
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where /1 = diag{1 0 19 ... 1 0} with 2N diagonal elements, and where I3 has a similar
form. Then it can be shown that 17

-1
0(Apin) = (sn;p mgx p{[ll + lzeJG]HE(e"p )}) ®

where 6(Anin ) represents the maximum magnitude of the smallest destabilizing k| or kj;
0< ¢<m 0<6<2m: pis the spectral radius; and Hg(zV) = Gg(zNX I - G g(zN))-1.
We are guaranteed that the system in Figure 11 will remain stable if

AL F(A 9
0k2<a('“"‘) )]

We are also guaranteed that when (9) is violated, there exist values of k) and k> that
destabilize the system in Figure 11.

Equation (8) is straightforward to solve with a two dimensiona} search in ¢ and 6.
The results are given in Table 2. For comparison, the corresponding results for the design
without the fictitious sensor noise are also given in Table 2. Notice that the addition of
the fictitious noise increases the maximum singular value of the smallest destabilizing
uncertainty by as much as 60%.

Even with the fictitious sensor noise, the robustness at the compensator inputs does
not meet NASA's specification of a maximum singular value of 0.75. We could have
improved the robustness at the compensator output further by increasing the fictitious
sensor noise level. but we chose not to do so because doing so simultaneously reduces the
gain and phase margins at the compensator output.

-

CONCLUSIONS

A new methodology for multirate control system design has been developed. It
accommodates a general multiple-input multiple-output control law structure that allows
the sampling rates for the plant sensor output signals, the update rates for the processor
states, and the update rates for the plant control input signals to be independently
specified. It includes a capability to synthesize a single control law for multiple plant
conditions so as to achieve robustness to plant parameter variations. Its analysis
components include a method for determining conventional gain and phase margins, a
method for determining a bound on the smallest destabilizing uncertainty, and a method
for determining the maximum RMS gain of a multirate system. As is demonstrated in

ol ea- -
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this paper by application to the design of a multirate flutter suppression system for a

model wing, this new methodology is a practical and effective tool for multirate control
system design.
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SECTION ONE

INTRODUCTION

1.0 OVERVIEW

The design and analysis of even a simple multirate compensator can be a'complex task. In this document we
describe some Matlab M -Files which aid in multirate design. They include M-Files for modeling multirate systems,
for computing optimum values of a multirate compensator’s gains, and for generating time domain simulations,

The remainder of the document is divided into three sections. In Section Two we review the basics of multirate
modeling and our optimization algorithm. We also present the key concepts and notation which are utilized in
Section Three. Section Three describes each M-File, detailing its inputs and outputs. Thg M-Files in this section
are divided into three categories: modeling, simulation, and synthesis. Finally, in Section Four we conclude with a
multirate design example.

11 SOFTWARE REQUIREMENTS
In addition to the standard Matlab toolbox routines, this software uses M-Files from both the Control_Toolbox
and the Optimization_Toolbox. These two toolboxes must be present for the multirate software to operate.
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SECTION TWO
BACKGROUND

20 OVERVIEW

In the following paragraphs we present the notation used in the remaining secticns and review some key

concepts which will be helpful to those using this software. A detailed explanation of the ' . 7y behind our M-Files
can be found in References 1-3.

21 A MULTIRATE FEEDBACK SYSTEM

A multirate sampled-data system consists of a continuous plant in feedback with a multirate compensator. A
bl ck diagram of such a system is shown in Figure 2.1. The vector y; in this figure represents the continuous plant
sensor output. Each element of y; can be sampled at an independent rate. The vector ¥ represents the sampled
value of y; available to the digital processor. (In our double index notation, the discrete signal p(m,n) results from
sampling the continuous signal p(t) at the times ¢ = (mN + n)T; where the integer N is the period of repetition; T is
the sampling time; m =0, 1, ... ; and n=0, 1, ..., N-1.) The digital processor obtains the current alue of y and
combines it with the current processor state vector, 7, using the state space structure shown in Figure 2.1. Each
element of the processor state vector, Z, can be updated at an independent rate. The continuous output from the
compensator. represented by the vector u, is formed by holding the output from the digital processor,«,

order-hold. Each element of the vector & can be held at an independent rate to form u. The ve.
represent the discrete sensor and continuous process noise respectively.

with a zero-
tors v and w

Conceptually. one can divide the multirate compensator into two parts, the “sampling schedule” and the digital
processor gains. This is the approach used in the synthesis and analysis software. The “sampling schedule” is a
description of when each compensator input is sampled and when each output and processor state is updated, while

the digital processor gains determine the dynamics of the digital processor. In the following paragraphs we discuss
each in detail.

l»(o

'

Continuous Plant )

|
' | Hmne1) = Agnizinm + Bydn | D) |
umn) = CAnAmn) + Dprypiin)
| Zero Order Hold(s) & & l Sampler(s)

| Digital Processor v(mn) I
- Muttirate Compensator — — — — — — . _
Figure 2.1 Closed-loop Multirate System
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211 The Sampling Schedule

In general, the sampling and updating of ys, 7, and & in Figure 2.1 can occur at any time. We, however, require
that these san.ple and update activities occur only at integer multiples of some fixed time, called the shorrest time
period (STP). The actual value of the STP is arbitrary, but is often a function of the hardware and software used to
implement the control law. We also require that the sampling and updating activities of the sensors, states and
Outputs repeat themselves after some fixed period of time. The period of repetition of the sampling schedule is
called the basic time period (BTP). Finally, we define

the integer N = g[l% and the value 7=STP Q.1)
In our double index notation, the first index (m)in p(m,n) indicates the integer number of BTP’s which have elapsed
when the sample/update occurred and the second index (n) indicates the integer number of STP’s which have
elapsed within the current BTP when the sample/update occurred.

We can rcpresent the sampling schedule for the multirate compensator graphically, as shown in Figure 2.2.
The figure shows a time line for each sampler, processor state, and zero-order-hold. The time line js divided into
one STP increments. On the left side of the time line is a description of the signal or state, being sampled or
updated. On the right side is a description of the particular activity represented by the time line, e.g. state update,
sampler, or zero-order-hold. Circles on each time line indicate when a sample or update activity associated with that
particular signal or state takes place. Usually the sampling schedule is shown for only one BTP since the sampling
schedule repeats itself every BTP.

In most applications, the sampling/updating activities for a given sensor, output or state will be periodic within
the BTP, as is shown in Figure 2.2. However, the sampling/updating activities do not have to be periodic within the
BTP. The only requirement is that the sampling/updating activities have some period of repetition (the BTP) and
that they occur at integer multiples of the STP. Once the STP and BTP have been selected, the designer can
arbitrarily specify sampling/updating activities at any mu'tiple of the STP with in one BTP. An example of a
multirate sampling schedule in which the sampling/updating activities are not periodic within the BTP is shown in

Figure 2.3. A sampling policy like this might be used to multiplex multiple inputs through a single analog to digital
converter.

21.2 Digital Processor Gains

The processor gains are the values of the matrices A:.B;.C.and D, in Figure 2.1. Like the sampling schedule,

they can be periodically time-varying with a period of repetition of one BTP. Generally, these matrices are free
design parameters which can be adjusted by the designer tc improve the performance of the multirate compensator.
The synthesis software discussed later in this document can be used to calculate optimum values for these gains.

22 THE EQUIVALENT TIME-INVARIANT SYSTEM (ETIS)

A multirate comnensator with the structure discussed in Section 2.1 can be modeled as a periodically time-
varying singie-rate compensator bv appending appropriate hold states to the digital processor model. This new
compensator has the form

Xmn+l) = Almxtmn) + B(ndu(m.n) (2.2a)
Ystmny=Clnxtmn) + D(n)u(m,m (2.2b)

forn=0.1...N-1,andm=0.1,..

This compensator has a sampling pericd of one STP and a period of repetition of one BTP (or NT). vs(mun)
represents the values of W) sampled every STP; u(t) is formed by holding u(m,n) with a cero-order-hold.

o o
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Figure 2.3. Example multirate sampling schedule with aperiodic sampling activity

Ysensor #2

The periodically time-varying single-rate compensator can be further transformed into a single-rate Equivalent
Time-Invariant System (ETIS) with the form shown below.

x(m+1,0)= Agx(m,0) + B ug(m.0) (2.3a)
Yem,0) = Cpx(m0) + D Eup(m0) (2.3b)
where
Vs(m 0) u(m0)
Yl .
and vgm0)=| 5"V | mey=| “mD 2.4)
Ys(mN-1) u(mN-1)

We use the subscript £ to denote vectors and matrices strictly associated with the ETIS. Notice that the ETIS
input/output vectors are composite vectors containing the input/output values of the multirate (or periodically-time
varying) system at N sampling times. Consequently, an ETIS is always MIMO even if the oniginal system is SISO.
If the multirate system has p inputs, ¢ outputs and a sampling period of one STP then the ETIS is a single-rate linear
time-invanant system with Np inputs, Ng outputs and a sampling period of one BTP.

The ETIS is fundamental to the analysis of multirate systems. It allows one to evaluate the performance and
stability of complex systems comprised of multirate, periodically time-varying and/or single-rate components using
only modified linear time-invariant single-rate techniques. For example, to evaluate the stability of the system in
Figure 2.1, we would first transform the multirate compensator into its ETIS with a given value for N. Then we
would discretize the plant at the STP of the compensator using a zero-order-hold and transform the resulting single-
rate system into an ETIS using the BTP of the compensator. Next, the plart and compensator ETIS's could be
combined in feedback just as if they were traditional single-rate systems. Finally, we could determine the stability
of the original multirate sampled-data system from the eigenvalues of its closed-loop ETIS.
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23 OPTIMIZING THE DIGITAL PROCESSOR GAINS

The synthesis software discussed later calculates opumum values of the digital processor gains, A z»B;, C;, and
D., by minimizing a quadratic cost function which reflects the pesiormance of the closed-loop system in Figure 2.1.
The cost function has the form

T _T T Ql M yc(')
7-’l_l+nlE{[)c(t) u (t)][MT Qz][u(t)]} (2.5)

where J is the cost associated with the closed-loop system shown in Figure 2.1. The vector Y is the continuous
criterion output and u is the continuous control input Q1, Q2 and M are the cost function weighting matrices which
are selected by the designer.

This cost function has the same form as that minimized by a continuous time LQR design. Thus the cost
associated with the optimized multirate compensator and that of an LQR design can be compared directly. The
designer can also use this fact to help select appropriate values for Oy, ( and M.

To improve the robustness of the compensator, the optimization algorithm can optimize the digital processor
gains for several different plant perturbations simultaneously. The resulting compensator will stabilize the plant at
each perturbation and provide overall optimum performance. This is accomplished by minimizing the new cost
function of Eqn. (2.6) which is the sum of the costs associated with each plant perturbation.

N N
- . O My
J:il-:il E{lyTee T:[ ” 2.6)
i=1 ‘ i=1"l"n‘:° {[yc,( b )] AN PO (

Here J; is the cost associated with the it plant perturbation and there are Np plant perturbations.
Optimum values of A;, B,, C,, and D,, occur when

a] _ al _ a] _ aJ _
DX—-O, TBZ-—O. CZ—O, and-(;Fz—O @D

Our algorithm uses a gradient type numerical search to determine values of the digital processor gains such that the
conditions in Eqn. (2.7) are satisfied. Because the synthesis softwaie uses an iterative process to detennine optimum
values for the digital processor gains, the user must provide the software with an initial guess for A, B,, C z»and D,.
The compensator corresponding to these values must stabilize every plant perturbation considered in (2.6).

Obtaining a suitable stabilizing initial guess can sometimes be a difficult problem. We refer the interested reader to
Reference 1.




SECTION THREE

M-FILE DOCUMENTATION

3.0 STANDARD VARIABLE DEFINITIONS
Many of the M-Files discussed in this document require similar input variables or provide similar outputs. To

simplify the documentation of these M-Files a set of standard variables are used throughout this document. They are
defined in Table 3.1 with Matlab variables and functions bolded.

Table 3.1 Standard Variable Definitions
M

Variable Description
pit Plant matrices in the form plt = [F, G; H, J] where the state-space representation of the
plant is
x(t) = Fx(t)+ Gu(t) (3.1a)
y(£) = Hx(t) + Ju(t) (3.1b)
or x(mn+1)= Fx(m,n) + Gu(m,n) 3.1¢)
Y mn)= He(mn)+ Ju(m,n) (3.1d)

depending on the value of stp defined later.

nplt Number of states in (3.1), or equivalently the number of rows in F
cmp Multirate compensator gain matrices. Given the state-space representation of the digital
processor
I(mn+1)=A,(n)Z(m,n)+ B.(n)y(m,n) (3.2a)
u(m,n) = C;(n)2(m,n)+ D.(n)¥(m,n) (3.2b)

where m=0.1.... and n=0.1,...N-1, so that the gain matrices, A., B,, C, and D., are
periodically time-varying. cmp has the form

_[A:0) B.(0)][A.(D) B(D) A(N-1) BAN-1 33)
= o paoyflam D[ CN=-1) D(N-1) '

IfA;, B., C,, and D- are constant, then

A2(0) B:(O)]

e =[cz(0) D, (0)

(3.49)
and it is assumeu that A;(0)=A;(1)= ... =A ;(N-1), B;(0)=B,(1)=... =B (N-1), elc.
‘The software automaticaliy deduces from the size of cmp, the value of ncmp and the

number of compensator inputs whether the digital processor gains are periodically time-
varying or not.

—“
Continued on following page...




Table 3.1 Standard Variable Definitions ( continued from previous page)

~ e e

Variable Description
ncmp Number of digital processor states in Eqn. {3.2), or equivalently the number of rows in A..
stp If stp > O then stp is STP, the shortest sample/update period of the compensator. Sece

Section 2.1.1, and plt describes a continuous plant.
If stp = O ther the plant matrices plt describe a discrete system whose sampling rate is
one STP of the compensator, and plt describes a discrete plant.

stppbtp Number of STP’s per BTP. stppbtp = N. Sce Section 2.1.1.

su Sampling schedule for the compens ‘or output. su has two forms
Case I: su is a matrix. su must have as many columns as there are compensator outputs,
and must have N rows (N = BTP/STP). Each element of su has a value of 1 or 0. A |
in the i# column and j’h row of su indicates that the % compensator output is updated
at the 1" STP within the current BTP. A O indicates no update and the previous value
is held. For example, given a two output system with the following sampling schedule

Output #1 E—-q-—fl ZOH
Output #2 20H

STP —»{ |e
—’r

fe— BTP

the corresponding value of su is
3.5

Case II: su is a row vector. The i# column of su specifies the sampling period of the
compensator output hold in number of STP's. For example, su=[1 4] specifies that the
first output is updated every STP and the second output is updated every fourth STP.
This form assumes that the updating is synchronized on the first STP of the BTP.

sy Sampling schedule for the compensator input. sy has the same form as su except that it
specifies when the plant output (the compensator input) is sampled.

sz Sampling schedule for the compensator states, sz has the same form as su except that it
specifies when the compensator's digital processor states are updated.




31 MODELING M-FILES

311 mr2etis
Formar (ae be ,ce de |- mr2etis( cmp, ncmp, su, sy, sz, stppbtp,

Description:  Convernts a multirate system into an ETIS with the form:

v(m,0)
x(m +1,0) = aex(m. 0) + bed ‘("'"”)1 (3.6a)
v(m N - l)
u(m,0) ] ¥(m,0)
u(m,.n+l) = cex(m,0) + de y(m, n+l) (3.6b)
u(m.I'V—l) v(m, N—l)j
Inputs . ¢mp, ncmp. su, sy, sz, stppbtp  The compensator description. See Table 3.1.
Outputs . ae, be, ce,de The ETIS matrices in Eqn. (3.6)
312 mr2pty
Formar: [P, nu. ny, nz]J=mr2ptv(cmp, ncmp, su, sy, sz, stppbtp)

Description:  Converts a muitirate system into a periodically time-varying system of the form

Mmn+1) = A(nx(m.n) + B(n)vim.n) (3.7a)
u(m.n)= C(nx(m,n) + Din)y(m.n) (3.7a)
Inputs : cmp, ncmp, su, sy, sz. stppbtp  The compensator description. See Table 3.1.
Outputs : P The periodically time-varying system matrices in Egn. (3.7), where
_|[PO) COIDIn CH] [DIN=-1) C(N=-1) 3.8)
"B A ‘[Bm AD] I BIN-D AN-1) ‘
nu Number of inputs « in Eqn. (3.7)
ny Number of outputs v in Eqn. (3.7)

(] Number of states x 1n Eqn. (3.7)
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3.1.3 ptv2etis

Format:
Description:

Inpu ,:

Outputs

(ae, be, ce, de}=ptv2etis(P, nu, ny, nz. stppbtp)
Converts a periodically time-varying system into its ETIS of the form of Eqn. (3.6)

P.nu. ny, nz The periodicaily time-varying system matrices. See Section 3.1.2
stppbtp See Table 3.1

ae, be.ce,de The ETIS matrices. See Eqn. (3.6)

3.1.4 srletis

Formar: (ae. be. ce, de }=sr2etis(a. b. c. d, stppbtp )
Description:  Converts the single-rate system in Eqn. (3.9) into an ETIS with an N of stppbtp, and the form of
Eqn. (3.6)
xXmn +1)= a(n)x(m,n) + bn)v{m,n) (3.9a)
utm,n) = c(nix(m,n) + d(n)y(m,n) (3.9h)
Inputs: a.b,c.d The single-rate systems matrices. See Eqn. (3.9)
stppbtp The desired N of the new ETIS. See Table 3.1
Outputs: ae, be, ce, de The ETIS matrices. See Eqn. (3.6)
315 stack
Format . [yl=stack(w. stppbtp )
Description:  Converts a traditional discrete-time vector w into an ETIS vectory
Inputs: w A matrix whose columns contain the values of the vector v(m.n) for Nk successive samples times,
where k is an integer. The matrix w has the form
w=[¥0.0). %0.1), ... . MO.N-D ¥(10), v(1.1). ... WLN-1), o YOE-1LN-1) (3.10)
¥ is written using the double index notation of Section 2.1.
stppbtp See Table 3.1.
Outputs : y AnETIS vector of the values of v (the ETIS of v) with the form

[' v(0.0) v(1,0) " v(k-1.0)
v(0.1) (L 1) (k=11

Y =EW.0Nyg.0). gk =10y = || - nE 3.11)
vonv-n] [van-n [,v(k-l.N-l)

L

oS



3.1.6 unstack
Formar : (W unstack(y, stppbtp )
Description:  Convens an ETIS vectory intoa traditional discrete-time vector w.

Inputs : ¥ An ETIS vector of the form of Eqgn. (3.11)
stppbtp See Table 3.1

Outputs : w A vector of the values of y(m,n) as in Eqn. (3.10)

NOTE: Additional M-Files used in support of those described in this section are described in Appendix B.




32 SIMULATION M-FILES

3.2.1 mrsim

Formar: ¥, t] =mrsim (plt, nplt, €mp, ncmp, su. sy, sz, stppbtp, simpstp, inputl , outputl. ur, stp, X0)

Description:  Generates a time response simulation of a continuous or discrete plant in feedback with a multirate
compensator. The routine assumes positive feedback as shown below with the continuous 1nputs

and outputs of interest sampled or updated every stp/simpstp seconds. This configuration allows
the user to simulate the inter-sample response of the muitirate system.

Up '@L-‘{P Plant T %
T f
Multirate l——
Compensator

T; = stp/simpstp

Inputs: pit. npit A description of the plant. see Table 3.1.

¢mp, ncmp, su, sy, sz, stppbtp A description of the mulitirate compensator, see Table 3.1.

simpstp This routine can calculate the response of the closed-loop system between the
sample/update activities when the plant is continuous (stp > 0). simpstp is the number of
simulation steps per STP of the compensator. simpstp must be an integer greater than zero and
simpstp = | if stp = (.

inputl A vector specifying which plant inputs are connected to the compensator outputs. For
example inputl = [ 4] indicates that the compensator outputs are connected to the first and
fourth plant inputs.

outputl A vector specifying which nlant outputs are connected to the compensator inputs. For
cxample outputl = |2 4] indicates that the compensator inputs are connected to the second and
fourth plant outputs.

ur The discrete input vector containing the values of the input at every (stp/simpstp ) time for
k-stppbtp simpstp sample times. ur has the form

uwr = up(0.0), up(0.1), ... -Up(k-1.stppbtp simpstp - 1)) (3.12)

Note that in Eqn. (3.12) the sample/update period is one stp/simpstp. This sample period should
not be confused with the sample period of the multirate compensator which is simply one stp.
The second index in the double index notation in Eqn. (3.12) takes on values between zero ard
simpstp- stppbtp .

stp sce Table 3.1,

X0 A vector containing the initial conditions of the plant state vector. If X0 is omitted. the iniual
conditions are assumed to be zero.

Outputs : ¥ A vector containing the response of the plant every (stp/simpstp ) time. y has the form

Y =[3p(0,0). yptOh, .. Vplk-1.stppbtp- simpstp - ] (3.13)

g~
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Note that the secord index in the double index notation corresponds to the second index of
Egn. (3.12)

t a vector containing the times corresponding to the columns of y. When stp = 0 then t indicates the
number of sampling periods.

Comments: This M-File uses the ETIS of the system o compute the time domain response. Hence, if k in
Eqn. (3.12) is not a multiple of simpstp-N where (N=BTP/STP) the system response is only
simulated to the nearest multiple of simpstp- N

3.2.2 mrfeedback

Format : (ae. be, ce. de ] =mrfeedback( plt, npit, cmp, ncmp, su. sy, sz.stppbtp . inputl. outputl stp)

Description:  Creates a closed-loop ETIS system from a discrete or continuous plant, depending on stp, and a
multirate compensator using positive feedback.

Inputs plt. npit The plant description. See Table 3.1.

cmp. ncmp, su, sy, sz, stppbtp The multirate compensator description. See Table 3.1.

inputl A vector specifying which plant inputs are connected to the compensator outputs. For
example inputl = {1 4} indicates that the compensator outputs are connected to the first and
fourth plant inputs.

outputl A vector specifying which plant outputs are connected to the compensator inputs. For
example outputl = [2 4] indicates that the compensator inputs are connectzd to the second and
fourth plant outputs.

stp See Table 3.1. If stp is omitted mrfeedback assumes stp=0.

Outputs : ae, be, ce, de The system matrices of the ETIS closed-loop system with the form of Eqn. (3.6). The
inputs and outputs of this system are the inputs and outputs of the discrete plant

T E———
- N )

.
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3.3 SYNTHESIS M-FILES

The synthesis algorithm is implemented as a series of script files. They allow the designer to optimize the
performance of the closed-loop system shown in Figure 3.1 by calculating values ot A, B;, C;, and D,, such that the
cost function of Egn. (2.6) is minimized. There are three distinct steps to the optim‘zation process: 1) entering the
data which describes the problem; 2) discretizing and preprocessing the data: and 3) optimizing the compensator
gain values. Each step of the optimization process is described in detail in the following paragraphs.

Although the synthesis algorithm was designed to solve the multirate sampled-data problem, it is fairly gencral
and can be applied to a variety of related problems as well. It can cecmpute optimum compensator gains for a
sampled-data systemn consisting of a continuous plant in feedback with a discrete compensator as shown in
Figure 2.1. or for a discrete system consisting of a discrete plant in feedback with a discrete compensator. In either

case, the compensators may be single-rate or multirate and may have either time-invariant or periodically time-
varying digital processor gains.

331 Input Variables

The synthesis algorithm looks for specific Matlab “workspace” variables to define the optimization problem.
(A “workspace™ variable is defined from the » prompt as opposed to being passed as an argument to a function.)
These variables define things such as the plant dynamics. the cost function ard the compensator structure and are
defined in Table 3.2. The user must assign values to these variables before beginning the optimization. This can

cither be done manually or automatically from a script. An example of a script which defines these variables is
provided in Appendix D.

Ye _
u >
> Piant
Continuous or Discrete Ys

- ~ n

umn) Amm+1) = AnZmn) + B mymin) Aman)

umn) = CAnAmn) + DAnipmin) ?
Zero Order Hold(s) Samepler(s)

Digital Processor ymn)
Figure 3.1 Closed-loop Mulurate System




Vanable

Table 3.2 Matlab Workspace Variable: Jefining Optimization Problem

Description

Np

pit

The number of plant perturbations. Np=1 indicates only the nominal pant is defined. See
Section 2.3

State-space matrices of the plant(s). Given the i continuous plant perturbation

(1)
.r,(t):F,-.t,-(r)+G,[ i } (3.14a)
[wi(t)

.‘fa(t)> L 0)
=Hix;(¢)+ J,; (3.14b)
{)':i(’), iXi () ti 0 f

or the " discrete plant perturbation, depending on the value of stp defined later,

Gimn+1)=Fxi(m.n)+ Gui(m.n)+ wi(m.n) (3.14¢)

{¥ei(m,n))

Hoximny + J u(m,n))
= H:x;(m, :
1_\'5,<(m.n)f i " !

0 r (3.14d)

where u is the control Input; w; is zero mean white noise input.; ¥ is the criterion output;
and yy; are the outputs which are sampled by the compensator. Then

w<l|fi Q][R G Fnp  Gnp
plt = \ RS (3.15)
H h[|H 1 Hnp  Inp

For convenience we assumed in Eqns. (3.14) that the input vector is partitioned into
the control input u; and the disturbance input w;. The software, however, can accommodate
a more general form for the input vector. Using the variables ucol and ncol. defined later,
the user can specify which inputs correspond to control and noise Inputs respectively. Any
row of the input vector can be either control, disturbance or both, (We Interpret an input
vector specified as both control and disturbance as tWO separate inputs, one a control input
and the other a disturbance input whose distribution vectors have the same values.)

Similarly, the outputs Verand v are specified by crow and srow respectively, and
any row of the output vector can be criterion output, sensor output or both.

NOTE: For a discrete plant, the process noise distribution matrix is unity.

A vector of the PSD values of the white noise disturbance w;. If

Wib(1) = E{w, (1~ o] (1)) (3.16a)
orif W,-(6(k)+6(j))=E{w,-(m.n)w,'T(nHk.n+/i} (3.16b)
depending on the value of stp, then

wxx= W, Wy . WNP]

15
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Table 3.2 Matlab Workspace Variables Defining Optimization Problem {conttnued from previous page )

Variable Description
vr The PSD values of the discrete sensor noise covariance. If the output, sampled every STP.,
is
vsitk) = Hixi(k) + vi(k) (3.17)
where , Vid(j)= Efvitkw] (k + j))
then
=[V) vy .. VNp]
ncol A vector specifying which columns of G; correspond to w;. If ncol = {1 4), then the plant

disturbance vector w is comprised of the first and fourth plant inputs.

ucol A vector specifying which columns of G correspond (0 ;. If ucol = 2 4}, then the plant
control input vector u is comprised of the second and fourth plant inputs. (Again. we
interpret an input vector specified as both control and disturbance as two separate inputs,
one a control input and the other a disturbance input whose distribution vectors have the
same values.)

srow A vector specifying which rows of G correspond to vg;. If srow = [1 3], then the first and
third continuous plant outputs are sampled and connected to the compensator. (
crow A vector specifying which rows of C; correspond to v¢,. If srow = [1 3], then the first and

third continuous plant outputs are used to calculate the cost given in Eqn. (3.18).

qla. q2a, maThe cost function weighting matrices for either a continuous or discrete cost function. {
depending on the value of stp defined later. The cost function has the form

M; Yei(?)
Jcontinuous = l‘m [‘a(’) i (’)] M i ll winy (3.18a)
i)l )

o P —

or

Np st -1 M; m,
. 1 i E Yalmm) ' [ O \a( "’]
s o EI ir (3.18b
discrete = !IM woktp i) l[u,v(m,n):l [M & n | !

where i corresponds to a parucular plant condition.

qla={Q1 Q2. QINp)
q2a =(Q1 022... (2Npl
ma=(N{ M .. Mpl

ga and ra must be symmetnc and positive semi-definite.
If ma s left undefined its value is assumed to be zero.

re— “—“-

connnued on following page. .




Table 3.2 Matlab Workspace Vanables Defining Optimizauon Problem (connnued from previous page )

Variable Description

cmp The compensator gain matrices as defined in Table 3.1. The digital processor gains can be
either periodically time-varying or time-invariant.
IMPORTANT: The user must provide an initial guess for cmp which stabilizes all plant
perturbations.

cmpfree This matrix specifies which of the gains in cmp are fixed. cmpfree has the same
dimensions as cmp, but its elements are either 0 or 1. A 0 indicates that the corresponding
clement in cmp is fixed and should not be opumized. A 1| indicates that the corresponding
element in cmp is free and can be optimized.

su, sy, sz The sampling schedule description. See Table 3.1. By selecting appropriate values for su,
sy, sz and Stppbtp the designer can specify whether the compensator is multirate or single-
rate.

Stppbtp The same as stppbtp in Table 3.1. Note that the first letter of Stppbtp 1s upper zase,

indicating this is a global workspace variable. See Section 3.3.2.

stp STP as defined in Tabic 3.1.

If stp > 0 the algorithm assumes that the plant (plt), the processor noise (wxx) and the
cost weighting matrices (qla. q22. and ma) are all defined for a continuous
plant in feedback with the discrete compensator.

. If stp = 0 the algorithm assumes that the plant (plt), the processor noise ( wxx) and the
cost weighting matrices (qla, q2a. and ma) are all defined for a discrete plant
in feedback with the discrete compensator. and that the sampling period of the
discrete plant is one STP of the multirate compensator

m“

3.3.2 mropt_init
Format mropt_init

Description:  This script operates on the workspace variables defined in Table 3.2. It discretizes (if necessary) the
plant, process noise and cost function; and defines a set of global workspace vanables used by the
optimization script { mropt_optim). This script must be rerun after making any changes in the
workspace variables defined in Table 3.2. with exception to changes in the values of cmp or

cmpfree.
Inputs : mropt_init is a script which uses the workspace variables defined in Tabie 3.2.
Qutputs : mropt_init save 1t’s output to the global workspace variables defined m Appendix A.
Commei.r. The global workspace variables defined by mropt_init are used by both the opumizaton script

mropt_optim and by the M-File cale_LQGcost. All global variables generated by mropt_init
begin with a capital letter. This helps to differentiate them from other workspace variables. A
brief description of these global vanables is given 1n Appendix A.

e
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3.33 mropt_optim

Formar: mropt_optim

Description:  mropt_optim computes optimum values of the dig.tal processor gains such that the cost function
defined in Eqn. (3.18) is minimized.

Inputs : mropt_optim uses the global workspace variables generated by mropt_init in addition to the three
workspace variables aefined in Table 3.3.

Outputs:

Comments:

The script returns a value of the cost function. the gradient of the cost function with respect to the
free compensator parameters, and the optimum values of the digital processor gains. These

values are “utomatically displayed on the computer screen and simultaneously stored in the
workspace variables defined in Table 3.4.

1) As already noted. if the user modifies the problem definition by changing the values of the
variables defined in Table 3.2, the script mropt_init must be rerun before running 'nropt_
The exceptions are changes to the variables defined in Table 3.3

2) mropt_optim can be computationally intensive. The user can abort the optimization with a
Control -C key sequence. Also see mropt_extract. Section 3.3.4

optim.

Variable

Description

cmp

cmpfree

dscale

This variable contains the compensator gains and is the same variable as described in

Table 3.2. These are the starting values for the optimizaton and must stabilize all plant
perturbations.

This matrix specifies which of the gains in cmp are fixed and is the same vanable as
described in Table 3.2.

During optimization the compensator gains are scaled using a variable named dscale to help
improve the numerical accuracy of the search. They are scaled as follows

Xscaled = inv(dscale) Xunscaled

where Xunscaled is an unscaled vector containing the free compensator gains and Xscaled
are those values scaled. Typically dscale is a diagonal matrix chosen so that all the
clements in Xscaled have the same magnitude. The user can either manually set dscale or
have mropt_optim set it automatically. If dscale exists and has the correct dimensions
then mropt_optim uses that value of dscale. otherwise a new value for dscale, based on the
current values in cmp, is automatically calculated. Typing “clear dscale’ before

running mropt_optim forces the routine to scale the problem based on current values in
canp.

‘N



Table 3.4 Output Workspace Variables tor mropt_optim

Vanable Description

cmpf This contains the optimized values of cmp after mropt_optim has completed the
optimization.

jeost This contains the value of the cost function after mropt_optim has completed the
optimization.

djdp This contain, 1 scaled value of the gradient of the cost function with respect to the

comnensator values after mropt_optim has completed the opumization.

w

3.34 mropt_extract

Formar: mropt_extract

Description:  After aborting the script mropt_optim. usually with a Control-C key sequence. the script
mropt_extract can extract the value of the “optimized™ compensator at the last iteration.

Inputs : None. Can only be rerun after aborting mropt_optim.

Outputs : The optimized values of the digital processor gains at the last iteration before mropt_optim was
aborted are displayed on the computer and stored in the workspace variable cmpf.

Comments: Sometimes it is necessary to abort mropt_optim before 1s has completed ‘he opumization. The user
might wish 1o rescale the free parameters by changing dscale, or might decide to free up
additional gains in cmp by charging cmpfree. The user can restart the optimization from the last
iteration by setting cmp =cmpf and rerunning mropt_optim.

335 calc_LQGcost
Format: [jcost k= calc_LQGcost g

Description:  Calculates the discrete LQG cost assuming a sampling period of one stp. This rout'ne uses the
global workspace variables computed by mropt_init. Use this routine to find the minimum value
of the cost function attainable by mropt_optim

Inputs . J =0 or is undefined. then the routine calculate the sum of the LQG costs for all Np plant conditions
corresponding to the cost J gscrere g1ven in Egn. (3.18).

O<j<Np then the routine calculates the LQG cost tor only the j”’ plant condition

Outputs jeost The value of the [.QG cost function
Comments: calc_LQGcost uses the Controls_Toulbox routines diqr and diqe. They require that ra in Table 3.2
be positive-definite.

NOTE: Additional M-Files used in support of those described in this section are described 1n Appendix B.



SECTION FOUR

SYNTHESIS EXAMPLE

40 P!.OBLEM DESCRIPTION

In this section we present an example design problem which utilizes the M-Files discussed in the previous
section. Our objective is to design a multirate compensator for a lightly damped mass-spring-mass system.

The mass-spring-mass (MKM) system is shown in Figure 4.1. It consists of two masses connected by a spring
and damper. The control inputs are the force inputs uy and u2; the sensor outputs are the displacements x| and x7;
and the disturbance 1aput is w. The sensor outputs are corrupted by discrete sensor noise (not shown on figure) with
covariance v. Nominal values for the plant parameters, along with those for one known plant perturbation, are given
in Table 4.1. These parameter values result in a system with two poles at the o.igin associated with xj, and two
lightly damped poles associated with x>. The open-loop poles are listed in Table 4.1. A M-File which defines the
system matrices for the MKM system is given in Appendix C.

The goal of our design 1s t¢ increase the damping coefticient on the lightly damped poles to {=0.707 without
shifting their natural frequency. and to move the two poles at the origin so that the x| respoase has a trequency of
0.825 rad/sec with a damping coefficient {=0.707.

f—— x; — r— x,—

/ .

k

,/ Uy ——* M \/\/\/\ e U

a — b m e - W
| S

s
v — — ",
/////,/ / e ///// // /////,/ P

Figure 4.1 Mass-Spring-Mass System

Table 4.1 Mass-Spring-Mass Parameter Values

Nominal Piant Perturbed Plant
Y] 1 0kg 1.0 kg
m 0.1 kg 0.2 kg
k 0.01 N/m 0.01 N/m
b 0.01 N-s/m 0.01 N-v/m
E{ wTtr-tm(n)} 0.18( N ? 0.18( N2
E{ vItk+ k) 0.001 &j)m? 0.0018G)m*

Open-Loop Poles 0,0, -0.055+ 3.316: 0. 0. -0 03042 4494

P RS e . . PP
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41  COMPENS., TOR DESIGN
Our compensaror design followed the preceding steps. All computer inputs and ot p ; 1 the following

paragrapiis are in this font., Bolded text should be input by the user, Plain text is returned by the
computer, instructi.iai comments are in ialic.

Step 1:  Select the weighting matrices for the quadratic cost function given in Eqn. (2.6) which characterize
the desired closed-loop performance
The cost function given in Eqn. (2.6) is the sum of the costs associated with each piant perturbation. In our case
we have two piants - th. nominal and the perturbed plant. We determined the weighting matrices for our cost
function by designing two continuous time LQ regulators which placed the closed-loop poles for the nominal and
perturbed plants in the desired locations. The cost functions are

Inominal = E(5.5x] +2.2¢2 + 10000u] + 1042} /10.6 (4.1a)

Ipernurbed = E{6.5x7 + 4.8 + 16300u] + 1042} /8.0 (4.1b)

the LQR designs for bhoth the nominal aud the perturbed plant. Of course we do not expect such a compensator to
exis:. Instead the resulting compensator wilj represent a compromise between good performance at the nominal
plant condition and good performancz at the perturbed condition.

Step2:  Select an appropriate compensator structure and sampling schedule based on the desired closed-
loop performance

The c'osed-loop LQR system has a fast mode associated with x| and u; and a slow mode associated with x,
and 4. We selected a multirate compensatos which capitalized on this structure. It consists of two coupled first-
order loops, one from *1 10 4| and another x> to 2 . A block diagram of this structure is shown in Figure 4.2. The
1} to i) loop is sampled and updated every 0.8 seconds while the x3 10 a5 loop is sampled and updated four time as
often. every 0.2 seconds. These sampling rates are approximately 10 time the desired closed-loop bandwith for each

loop. In addition. the compensator accounts for a one-half sampling penod computational delay. It's sampling
schedule 1s shown in Figure 4.3

U«‘ X]
Ma:'s-Spring-Mass '\?? x; Command
4MOrder Piant
’ “2 r 2 >Pe % Command
15! Order Compensator
T=08s | State update = 0.8 sec T=08s
15t Order Compensator
\ State update = 0.2 sac ) —
T=0.2s T=02s

Figure 4.2 Block Diagram of Closed-Loop Multirate System



X Tdttt+T sampler
X f—+-3—+—?—+—?—+—‘i Sampler

U Ty ZOH

) ZOH
Zslow ?-4—0—H—+—H—1 State Update
Zast State Update

STP=0.1 sec ::] le—
BTP=0.8 sec

7= sample/update activity
Figure 4.3 Sampling Schedule for Multirate Compensator

Step3:  Design a compensator with the sampling schedule and structure selected in Step 2 that stabilizes all
plant perturbations. This will be the starting point for the optimization.

We designed a compensator using successive loop closures and root locus for the numinal plant. The
compensator has the same structure and sampling schedule as the muitirate design discussed in Step 2 except there 15
no tnput coupling and we did not account for computational delay. This compensator does however stabilize both
the nominal and perturbed plants even with the computational delay and so can be used as the starting point for the
optimization.

Refer to Reference | for an introduction to successive loop closures.

Stepd:  Load the problem definition into Matlab’s workspace variables defined in Table 3.2.

We defined the workspace variables using the Matlab script provided in Appendix D. To load the workspace
variables for this exarnple, type

»mropt_mkm

Step5:  Initialize the workspace variables and generate the necessary global variable using mropt_init
Type
»mropt_init see Section 3.3.2

At this point you can comput. he minimum value of the cost function as tollows (see Section 3.3.5)

»calc_LQGcost see Section 3.3.5
>» ans =

2.0108e+00 this is the minimum cost our design could achieve




Step 6:

Calculate optimum values of the digital processor gains using mropt_optim
A partial output of the optimization follows

»2xropt_optim see Section 3.3.3

Automatically selecti ng dscale adiagonal dscale is automatically selected if the variable
dscale does not exist, or is not compatible with the
current compensatcr

Calculate gradient only?

£ -COUNT

->
->
->
->
->
->
->
->

Plant
Plant
Plant
Plant
Plant
Plant
Plant

2

£-COUNT
FUNCTION

o o = N S S SRR

Plant 1
-9.

-1

1.
-1.

-2
-9
-1

1

o

.2977e-02
-4363e-01

(y or n)n  ifwe repliedy the algorithm would compute only
the gradient of the cost with respect to the free
digital processor gains and the value of the cost
for the current compensator gains in cmp

documentation

FUNCTION

176
unstable
unstable
unstable
unstable
unstable
unstable
unstable
unstable

9655e-01
.6399%e-02
0030e+00
0676e-02

.3703e-03
.0529e+00
.0030e+00
.0036e+00
.0529e+00
.0085e+00

the total number of function evaluations

the value of the cost function at the current iteration. Refer to Matlab FMINJ

STEP-SIZE GRAD/SD LINE-SEARCH
0.01 -9.48e+07

while
while
while
while
while
while
while
while

calculating
calculating
calculating
calculating
calculating
calculating
calculating
calculating

(SRR SN SR SR R SR R

The algorithm encountered a destabilizing
solution. [t automatically adjusts the step
size and continues the optimization

these are the values of the scaled digital processor gains
at the current iteration
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-8.0984e-01
-1.6700e+01
1.8697e+00
2.2849e+01
7.4219e-01
-7.3479e+00
-8.6882e+00
7.9308e+00
1.0706e+00
3.8424e-03
1.0367e+00
1.4037e+00
ool Final Results
Gain Gradient
-1.6197e-01 -4.6527e-06
-1.6700e+01 €.6547e-04
1.8697e+00 -2.8675e-04
2.2849%e+01 4.5050e-04
7.4219e-01 1.
-5.5109e+00 -8.9955e-04
-8.6882e+00 -4.8353e-05
7.9308e+00 -8.5171e-04
8.5648e-02 -1.0838e-04
1.9212e-03 6.9640e-04
6.2202e-01 3.4133e-03
1.4037e-01 3.2564e-04

4.62

Final cost = 4.62482

Optimized compensator gains

crapf =

1.9212e-03
0
8.5648e-02
0

Elapsed time:

1.

6.

0
4037e-01
¢
2202e-01

1516.05 sec

14.2 2.45e-13 int_st
Optimization Terminated Successfully
Gradient less than options(2)

NO OF ITERATIONS=314

LR B =

these are the unscaled digital processor gain values
6576e-04 and their scaled gradient values

the optimum value of the cost Sunction

1.8697e+00
2.2849e+01
-1.6197e-01
-1.6700e+01

-

-2.6882e+00
7.9308e+00
7.4219%e-01

-5.5109e+00



42 DESIGN ANALYSIS

We looked at two criteria when evaluating our multirate design: 1) the final cost; and 2) the step response to a
command input.

4.2.1 Final Cost

The final cost for the multirate compensator is calculated automatically by the optimization routine
mropt_optim. The LQG cost is computed by the function calc_LQGcost in step 5. For our system

Jmultirate = 4.6 and J1Qr =2.0

4.2.2 Step Response
We obtained the response to a unit command step to x| as follows

»[a,b,c,d)=smkm; get the nominal plant

»be (b zeros(4,1)}scm[c;[1 0 0 0)1; create a reference input
»dm[d zeros{4,1);0 0 -1];
»urs[zeros(2,100);o0nes(1,100)]}; generate a step input function for the input
and compute the time domain response. see Section 3.2.1
»[y,t)=mrsim((a bjc &],4,cmpt,2,su, sy, sz, Stppbtp, 1, (1 2], (5 3],ur,stp);

assuming cmpf, su. sy, sz, Stppbtp, and stp were previously defined and
that cmpf contains the optimized values of the digital processor gains
»plot (t,y ({1 3],:)}

We similarly obtained the step response for the LQR design. The results are shown in Figure 4.4.

As expected the performance of the multirate design does not match that of the LQ regulator. The LQ regulator
was optimized for only the nominal plant. The multirate designs on the other hand represent a compromise,
stabilizing both plants and providing “optimum” performance for both. In addition, the LQ design was a continuous
full-state design whereas the multirate design was discrete second order and used only two state measuremenis.

g

Deflection (Meters)

LQR A
Multirate

0 1 2 3 4 5 6 7 8 9
Time (Seconds)
Figure 4.4 Response of MKM system to command step response to x,

o —
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APPENDIX A

GLOBAL WORKSPACE VARIABLES

The following giobal workspace variables are defined by mropt_init. Note that the first letter of every global
variable is capitalized.

For eact plant perwrbation, the discrete closed-loop system can be written in the form:

X(man+) = Fix(tmn) + Giu(m.n) + W (A.])
vilm.n) = Hix(m.n)+ Vw; (A.2)
uitm.n) = (SI(n)P(n)S2(n) + S3(n))y s(m.n) (A.3)
where
L L T T 0 T o R

and w is a discrete zero mean white noise input with

E{w,-(m.n)w,fl‘(m+j,n+k)}={5(k)+6(j)}R,- (A.5)

The subscript i indicates the i plant condition and the overbarred matrices are the discretized plant matrices. The
matrices S1, S2, and $3 are periodically time-varying switching matrices which mode| the multirate sampling
scheme. and P is a matrix of the compensator’s digital processor gains

The discrete cost function for the system in Eqns. (A.1-A.3) can be written as

NpN-1 | T
, 1 | Smm MOy M (m,n)
J= 1 -f £l ] ~ (A6
e N z Lw(m.n) AN l_u,-(m.n) )

1=l n=() <
See Reference | for more information.

The global Matlab workspace variables are then defined as follows.

Plant Description:
Np = number of plant conditions

MF=(F| Fa, .., Frp) NcF = number ot columns in Fi
MG=(G,, G,. ..., Gnpl NeG= number of columns in G
MW= [W| W, . Wnp | NcW = number of columns in W;
MH=[H| H,, .., Hnpl NcH= number of columns in H;
MV= (V) vy, . Vnp NcV = number of columns in Vi
MR= (R} . R;, ..., Rnp) NeR = number of columns in R;
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Compensator Description:

Nzhemp = number of states in the periodically time-varying model of the multirate compernsator

Stppbtp = the global version of stppbtp

S1k = [S1(0), S1(0), ..., SIN-1)]  Nsl = the number of columns in S1

S2k = [ 52(0), $2(0). ..., S2(N-1)]  Ns2 = the number of columns in §2

S3k = [$3(0), $3(0), ..., S3(N-1)]  Ns3 = the number of columns in §3

Ptv: abs(Ptv) = number of columns in the compensator gain matrix {4;. B;: G,, D,]. Ptv is positive if the
digital processor gains are time-invariant and negative if they are periodically time-varying.

Cost Function Description:

MQ1=(0y1. 012, ... Q) Npl  NeQIl= number of columns in Qi
MQ2= (071,02, .. 0y Np]  NcQ2= number of columns in Qi
MMs= (M, M, ... Mnp | NeMs= number of columns in M,

Miscellaneous Definitions:

Ppn . Ppm. and Ppinit : used internally

Ppfree = index to the "“free” digital processor gains

Fel = closed-loop state transitions matrix of the last computed ETIS system

Xc_global = value of the compensator gains at the last iteration

Unstable:  If Unstable =0  the compensator gains at the current iteration stabilize the plants
Otherwise they destabilize the plant

- AP ——




APPENDIX B
SUPPORT M-FILES
B.1 MODELING SUPPORT M-FILES
B.1.1 mrsplit
Formar: (a, b, d]= mrsplit(P, n)
Description:  Separates the composite gain matrix P into its constituents, where
p=[d ©] B.1
b aJ (B.1)
Inputs: P see Eqn. (B.1)
n the number of columns in a
Output:: a,b,c,d the gain matrices in Eqn. (B.])
B.1.2 mrmakesk
Formar . [s1k, nslk, s2k, ns2k, s3k, ns3k]=mrmakes*(su, sy, sz. stppbtp)

Description:  The periodically time-varying representation of a multirate compensator in Eqn. (2.2) can be wnitten
as

y(m.n) D(ny C(m)Tu(m.n)] | D.(my C.(n) Tu(m.n)
= ={Sln)| * SUUIS2n) + S3(n) (B.2)
x(m,n+1) B(n) A(n)| x(m.n)| | B.(n) A.(n) x(m.n)

where A;. B;. C; and D; are the digital processor gains and S1, S2 and S3 are switching matrices
which model the compensator’s sampling schedule. mrmakesk creates the periodically ime-
varying switching matrices given the sampling schedule description.

Inputs : su, sy, sz, stppbtp see Table 3.1
Outputs:: slk={S1(0) S1(1)... Si(stppbtp-1)}
s2k = [S52(0) S52(1) ... S2(stppbtp-1)}
s3Ik =[S3(0) S3(1) ... S3(stppbtp-1)]
nslk. ns2k and ns3k the number of columns in S1(-), S2() and $3(-) respectively
B.13 mrgetsk
Format (st.s2. s3 l=mrgetsk (k. s1k. nslk. s2k. ns2k. s3k. ns3k)

Description:  Extracts the individnal switching matrices for a given STP from sik. s2k and s3k.

Inputs: k an integer specifying for which STP the switching matrices are 10 be extracted
slk, nslk. s2k. ns2k. s3k. ns3k see Section B !.2.

Outputs : sl, 52, 83 switching matrices corresponding to Sl(k), S2(k) and S3(k) respectively. See
Section B.1.2.



B.2  SYNTHESIS SUPPORT M-FILES

B21  calc_djdp

Formar: djdp=calc_djdp( pguess. dscale)
Description:  Used by the routine mropt_optim to calculate 1.2 derivative of the cost J with respect to the free
compensator parameters. See Section 2.3.
Inputs: pguess a vector of the values of the free digital processor gains at the current iteration
dscale sce Table 3.3.
Comments: This routine uses the global workspace variables generated by mropt_init
B.2.2 calc_j
Format: djdp=calc_j(pguess, dscale)
Description:  Used by the routine mropt_optim to calculate the cost J at the current iteration
Inputs: Pguess a vector of the values of the free digital processor gains at the current iteration
dscale see Table 3.3.
Comments: This routine uses the global workspace variables generated by mropt_init
B.23 cale_L
Formar: {lacc |= calc_L(pk. f, g, w. h. ql, g2, m)
Description:  Called by cale_djdp to calculate the steady-state values of a Lagrange multiplier. (The multiplier is
used to adjoin the stability cquality constraints to the cost function.)
Inputs pk gains for the periodically time-varying representation of the multirate compensaior
k=[P(0),P(1).....P(N - 1)} and P(i) = bty ¢ (B.3)
pk = P, ... { and P(i) = BGY A .
D(1), C(i), B(i). and A(i) are the state space matrices for the periodically time varying
representation of the compensator. See Section 2.2 and Section B.1.2
£, g w. h plant description matrices for the current plant perturbation corresponding to F;, G;. W and
H; in Eqn. (A.4).
ql. @2, m cost weighting matrices for the current plant perturbation corresponding to Qy,, Q7;and
M; in Egn. (A.6).
Output: lace perindically time varying lagrange muitipliers where
lace = [A(1) A(2) ... A(N-1) A(0))
and A(@i) is the lagrange multiplier for the i’? STP
Comrents: This routine uses the global workspace variables generated by mropt_init

w e s L e .
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B.24 calc_P
Format: [pkl=calc_P(p)
Description:  Called by cale_j and cale_djdp to compute the periodicaily time-varying representation of the

Inputs :

Outputs :

Comments:

multirate compensator
p the digital processor gains in the form
D.(i) C.(i)
B.(i) A.()
pk matrix of the compensator gains for the periodically time-varying representation of the multirate
compensator
pk = [P(1), P(2), P(3),... P(N)] where Xi)= SHOpG)S2i) + S3(i)
See Eqn. (A.2) or Section B.1.2.

This routine uses the global workspace variables generated by mropt_init

B.25 cale_X

Format:

Description:

Inputs

Comments:

[xace |= cale_X(pk,f.g. w.h.v.r)

Called by calc_djdp and calc_j to calculate the steady-state covariance values of the closed-loop
system

pk matrix of the compensator gains for the periodicaily time-varying representation of the multirate
compensator, see Section B.2 4.

£ g. w. h plant description matrices for the current plant perturbation corresponding to F;. G;, W. H;
and V in Eqn. (A 4) respectively

r process and sampling noise covariances for the current plant perturbation corresponding to R, in
Eqn. (A.5).

This routine uses the global workspace variables generated by mropt_init

B.2.6 disc_cost

Format:

Description:

Inputs:

Outputs :

{qld. q2d. md|=disc_cost (pit. nplt. stp. q1. q2. m)

Computes the discrete cost function weighting matrices such that the cost associated with a
continuous plant in feedback with a single-rate compensator is identical to the cost associated
with the discretized plant in feedback with the single-rate compensator. The continuous cost
function is given in Eqn. (2.6): the discrete cost function is given by

N-1 T ]
x(m, My [ x(m,
J[t(m ml'[Qg My [t(m n) | B4
(L

: |
gy = lim E
discrete m'_’w A 20 wm.n | L,\IJ QZdJ u(m,n)_]]
n=

disc_cost assumes the control input is updated using a zero-order-hold.

pit. npit, stp sce Table 3.1
ql. q2. m the continuous cost function weighting matrices in Eqn. (2.6)

qld. q2d. md the discrete weighting matrices in Eqn. (B.4)
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B.2.7 disc_noise

Format: (W [=disc_noise(wxx, pit, nplt. stp)

Descriprion:  Computes the covariance of a discrete-time white noise process disturbance such that the expected
value of the states of a continuous plant, and the expected vulue of the states of the discretized
plant are equivalent at the sampling instances. Thus, given the continuous plant

x(t) = Ax(t)+ G, n(r), where E(w(t)w! (¢ + 7)) = 8( T)wxx
and the plant discretized with a zero-order-hold at a sampling period T
tglm.n+1) = Agxg(m,n)+wy(n,n), where E(wd(m,n)w;(m +kon+j))=(8(k)+ 8 j))w
then E{xg(m.n)xg (m.m) = E{x((mN + mT)xT((mN + n)T))
Inputs : wxx PSD of the continuous processor noise
pit, nplt, stp see Table 3.1. The inputs to plt are assumed to be only the process noise
Outputs : w PSD of the discrete process noise

B.2.8 dlyap2

Format:

Description:

Inputs .

Outputs

x=dlyap2(a, ¢, method )
Solves the discrete lyapunov equation

x=axal +¢c (B.S)
a, ¢ system maitrices in Eqn. (B.5)

if method = ‘Bartels’ then the algorithm solves Eqn. (B.5) using Bartels method
otherwise Egn. (B.5) is solved using partial sums

X the solution to the lyapunov equation

B.2.9 get_cost

Formar:

Description:

Inputs :
Outputs :

Comments:

(ql, q2, m}=get_cost(i)

Extracts the cost function weighting matrices Q1, Q2 and M for the i’ plant perturbation from the
global workspace variables MQ1, MQ2, and MM . See Appendix A.

i an index to the desired plant perturbation
ql. g2, m the cost weighting matrices corresponding to Q1, 02 and M respectively

This routine uses the global workspace variables generated by mropt_init



B.2.10 get_pit

Formar: (f. g w.h.v.r=get_plt(i)

Description:  Extracts the plant matrices Fi. G;, W. H;, V,and R; for the i plant perturbation from the global
workspace variables MF, MG, MW, MH, MV and MR. See Appendix A.

Inputs : i an index to the desired plant perturbation

Outputs f.g w. h. v, r plant description matrices for the i*t plant perturbation corresponding to F;, Gi. W, H;,
V. and R; respectively

Comments: This routine uses the global workspace variables generated by mropt_init
B.2.11 get_ppfree

Format: ppfree = get_ppfree(cmpfree, ncmp )

Description:  Called by mropt_optim to determine which compensator gains will be optimized

Inputs . cmpfree. ncmp see Table 3.1,
Outputs : ppfree vector whose elements point to the free elements in cmp

B.2.12 get_sk
Format: [sl,s2, s3get_sk(k)

Description:  Extracts the switching matrices S1(X. $2(k) and S3(k) for the k# STP from the global workspace
variables S1k, S2k, and S3k. See Appendix A.

Inputs : k indicates the k' STP of the current BTP. NOTE: k = 1.2, ..., stppbtp
Outputs: sl, 2. s3 switching matrices for the k' STP corresponding to S1(K), S2(k) and S3(k) respectively
Comments: This routine uses the global workspace variables generated by mropt_init

B.2.13 make_noise

Format: {r=make_noise(rw, rv)

Description:  Creates a compound noise covariance matrix from rw and rv

Inputs : rw, rv the process and sensor noise covariance matrices respectively

Outputs : r compound noise matrix of the form

_rw0
r—0rv
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B.2.14 make_plt

Formar:

Description:

Inputs

Outputs:

If.g, w h.v, nzcmp |=make_pit(pltc, nplt, ncmp, stp)
Creates the compound plant matrices F;, G;,, W and V for the currsnt plant perturbation. See

Appendix A.

pltc has the same form as plt in Table 3.1 except it describes only a single plant perturbation
nplt, ncmp, stp See Table 3.1.

f.g. w.h, v compound plant matrices F;, G;, Wand V for the cu'tent plant perturbation respectively

nzcmp the number states in the periodically time-varying representation of the multirate
compensator

B.2.15 mropt_check

Foimat:

Description:

Inputs :

Outputs:

mropt_check

mropt_check performs elementary error checking on the data in Table 3.2 and set the vanable
err=:1 if it finds an error in the data. mropt_check is culled by mropt_init.

None

None

5.2.16 mropt_global

Formar:
Description:
Inputs

Outputs :

mropt_global
Called by mropt_init to define the global workspace variables
None

None

B.2.17 mropt_fminu

Formar:

Description:

Inputs:
Outputs :

Comments:

[x, OPTIONS] = mropt_fminu(FUN, x, OPTIONS. GRADFUN, P1. P2, P3. P4, PS. ...
P6. P7. P8. P9, P10)

A modified version of FMINU from the Optimization_Toolbox. This version automatically reduces
the search step si.e when a destabilizing solution is encountered.

See FMINU
See FMINU

Requires the Optimization_Toolbox

-




APPENDIX C

M-FILE MKM

The following [v-File creates the state space matrices for the Mass-Spring-Mass system of Section 4.0

function [(a,b,c,d]=mkm(=1,m2,k.b)
$(a,b,c,d]=mkm(ml,m2,k,Db)

if nargin~=4 $nominal plant
mli=1;
m2=.1;
k=1;
b=0.01;
end;

t=(1/ml)+(1/m2);

a={0 1 ¢ 0
0 0 k/ml b/mil
0 0 0 1
G 0 -k*t -b*t];
b= [0 0
1/ml ¢C
0 0
-1/ml 1/m2]}
c=eye(4);

d=zeros (4,2);



APPENDIX D

SCRIPT MROPT_MKM

The following script defines the workspace variables in Table 3.2 for the exampie problem of Section 4.0

o

I I K I I IO

Seript: mropt_mkm.m
Example script for creating input data for mropt

Creates the following data required by mropt_init
plt,nplt,wxx,rv,gla.g2a,ma
ucol,ncol, srow,crow
S2Z,su, sy,cmp, stp, Stppbtp, cmpfree

$ G. Mason, U.W. 1992

Np=2;
nplt=4;
plt=[];

% Plant #1

Continuous plant description -----

% The number of plant conditions
% The number of states in the plancs
% Clear the variable which holds tne plant data

[a,b,C,d]=mkm(l,O.l,1,0.01);
plt = [a b; c d};

% Plant #2

la,b,c,d)=mkm(1,0.2,1,0.01);
plt = [plt [a b;c d]];

% Pointer to rows and columns in the plant

ucol=(1 2];

ncol=2;

srow={1 3];
crow=(1 2 3 4)};

% control input

% process noise input

% sensor output from the plant

% criterion output from the plant

% Continuous process noise PSD
% wxx is a compound matrix like plt, it contains wxx for plant #1 and #2

wxx=[.1

9

L1

% Discrete sensor noise PSD

% with same compound form as plt
rv=eye(2)*0.001;

rv={rv rv};

Continuous Cost weighting matrices -----

% Output criterion weights

% Use le-8 instead of 0 so that gal & ga2 are positive definite
% The synthesis algorithm would accept semi-definite gla & gla
% but calc_LQGcost will not

qlal=diag((5.5 le-8 le-8 2.2])
qla2=diag([6.5 le-8 le-8 4.8]);

’

qla=(qal/10.6 qa2/8.0];

% Control input weights
q2a=diag((led lel!);

AR et T (8 A 0y SN . ) )
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q2a=[ra/10.6 ras/8.0];

% Cross weighting (ma)

% if there is no C€ross weighting it can be left undefined
clear ma

& - Compensator description -----
% Digital Processor gains from Successive loop closures design

% Sampling schedule
su={0 0;1 1;0 0;0 1;0 0;0 1;0 0;0 1);
% Compensator output updating w/ delay

sy=(8 2]; % Sensor input sampling, multiplexed
sz=(8 2]; % Compensator state update

stp = .1; % The shortest sampling period
Stppbtp = 8: % The number of Stp's in one BTp

% Free compensator gains
cmpfree={1 0 1

o o
O
P
O s

1

% clear temporary variables
clear a b ¢ g

VTR PP T T o o

~ e o




